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Who Are We?

Our Mission: Increase the trustworthiness of artificial intelligence (AI).

• Chair of Artificial Intelligence and Formal Methods at RUB 

• Group of Safe and Dependable Artificial Intelligence at Radboud University Nijmegen, NL 

• European Research Council (ERC) Starting Grant: Data-Driven Verification and Learning Under Uncertainty (DEUCE) 

• Studies and PhD at RWTH Aachen, Germany 

• Postdoctoral Researcher at UT Austin, TX, USA 

• Assistant/Associate Professor Radboud University Nijmegen

Formal  

Methods

Artificial  

Intelligence
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Motivation: Artificial Intelligence (AI) Systems

…have great potential for our society…
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Motivation: Safety in AI

“AI systems need to be resilient and secure. They need to be safe, ensuring a fall back plan in case 

something goes wrong, as well as being accurate, reliable and reproducible.” 
European Commission. Ethics Guidelines for Trustworthy Artificial Intelligence. 2019.

Self-driving Car 

The Guardian

Spacecraft Operations 

Airbus 

Delivery Drone 

Amazon 
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Intelligent Decision-Making Under Uncertainty

H

H

“Almost surely, always return to the halting pad after a delivery, 

and a crash can only occur with probability at most 0.001%.”

Formal specification in probabilistic temporal logic: 

 Pr=1( □ (delivery → ◊H)) ∧ Pr≤0.001(◊crash)

What are the challenges if we aim to provide 

guarantees on the behavior of an agent? 

Uncertainty caused by sensor 

imprecision, wind gusts, and 

limited view


Complex task specification
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Scientific Challenges

Major scientific challenges remain in 

decision-making under uncertainty. 

• scalability for realistic applications with 

high-dimensional feature spaces


• continuous state and action spaces 

• uncertainty and partial information 

• guarantees for data-driven problems
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Reinforcement Learning

RL 

Agent

observation

action

Environment

Find a policy  that maximizes  

with the discount factor  and reward  at time .

π & [
∞

∑
t=0

γtRt]
0 ≤ γt ≤ 1 Rt t

Limitations 

• Exploration is safety-critical


• RL is data-hungry


• Rewards cannot capture sophisticated task 

specifications

A reinforcement learning (RL) agent  

• Explores its environment by taking actions and 

observing feedback signals


• Episodically determines the optimal way to make 

decisions within the environment
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Formal Verification

Model Verifier

Specification
Environment
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φ = Pr≥0.9(◊ s7)

For the model , compute a policy  such 

that  


or prove that no such policy exists.

ℳ π

ℳπ ⊧ φ

ℳ

Limitations 

• Hardness of underlying problems, scalability to real-world scenarios


• Availability of models 

• Integration with data-driven problems

  


(nonconvex and semi-infinite optimization problems)

∀s ∈ S∖T . ∀P ∈ - . ps ≤ ∑
a∈Act

σ(s, a) ⋅ ∑
s′ ∈S

P(s, α, s′ ) ⋅ ps′ 

Model Checking 

• Given a formal model of an environment, prove its correctness 

regarding a formal specification 

• Rigorous numerical techniques for uncertainty models 

• Markov decision process (MDP) , extensions: Uncertainty, 

partial observability, adversaries

ℳ
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A Multidisciplinary Approach

Innovation: Tightly integrated verification and reinforcement learning 

methods that are robust against uncertainty under real-world conditions

Formal  

Methods

Rigorous  

Model-Based 

Verification

Artificial  

Intelligence

Decision-Making 

under 

Uncertainty

Control 

Theory

Control for  

Continuous 

Spaces

Robotics
Case  

Studies
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Formal  

Methods

Rigorous  

Model-Based 

Verification

Artificial  

Intelligence

Decision-Making 
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Theory

Control for  

Continuous 

Spaces

Robotics
Case  

Studies

Uncertainty

“Uncertainty is largely related to the lack of predictability of some major events or stakes, or a lack of data” 
Argote, L. (1982). Input uncertainty and organizational coordination in hospital emergency units. Administrative science quarterly, 420-434.

A Multidisciplinary Approach

Reduce uncertainty or be robust against uncertainty.

Innovation: Tightly integrated verification and reinforcement learning 

methods that are robust against uncertainty under real-world conditions

LearningVerification

Partial 

Model

Robust 

Optimization

Control-based 

Abstractions
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Data-Driven Verification

ℳ

Neural 

Network 

Policy

Verification M ⊧ φ

POMDP Specification φ = Pr≤0.01(◊crash)M

Key Requirements


• Suitable neural network architecture


• Iteratively improve the level of training


• (Towards) understandable decision-

making


• Policy should be easy-to-verify
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Challenge: Robust Neural Network Controllers

Family of 

Uncertainty 

Models

Analysis 

(Robustness)

Diagnostic 

Data

Environments
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Challenge: Uncertainty Models

“How to combine data-driven learning and model-based reasoning?” 
Dutch Research Council (NWO).  Artificial Intelligence research agenda for the Netherlands.  2019.

Uncertainty 

Model
Learner

System

Model-based 

Analysis

Problem: Learn and analyze a model


• from data or samples obtained by actively probing a system


• that robustly captures uncertainty and probabilities


• that is amenable to efficient model-based analysis 
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Verification of 

uncertainty 

models

Data-driven and 

feature-based 

abstraction 

techniques

Challenge: Data-Driven Verification and Abstraction

Abstraction

Model

Verifier

Data-driven abstraction integrated with 

verification 

•Construct candidate abstraction that is 

good-to-verify


•Reduced features spaces or suitable 

discretization


•Provide exact or probably-approximately-

correct (PAC) guarantees

(Continuous)

System 

Environment

feature-based abstraction for MDPs  

and  with features  and  and 

dynamic Bayesian networks defining 
variable dependencies

M1

M2 x y
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Challenge: Safety and Correctness in Reinforcement Learning

RL 

Agent

observation

action

Environment

Shield

action

block

Model

Verifier

RL 

Agent

observation

action

Environment

Constrained RL 

Maximize subject to 


with additional cost function  and threshold 

& [
∞

∑
t=0

γtRt] & [
∞

∑
t=0

γtCt] < λ

C λ

Shielded RL 

Maximize subject to 


with temporal logic specification 

& [
∞

∑
t=0

γtRt] ℳπ ⊧ φ

φ

• Ensure safe and correct behavior or exploration 

of RL via a shield that blocks unsafe, incorrect, 

or irrelevant actions


• Improve the convergence rate of RL


• A shield injects domain knowledge to reduce the 

search space for RL


• Integrate a verifier with RL that constructs and 

updates a shield according to data


• Tradeoff between correctness and RL exploration
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Shielded and Unshielded RL

Unshielded Shielded

• (Tuned) RL with REINFORCE


• Simple shield construction using the Storm model checker and mask() function of tensorflow
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Learning Safely From Pixels

•Stochastic Latent Actor-Critic Model


•High-dimensional observations driven by low-

dimensional underlying latent process  


•Great performance with high sample efficiency


•Learn a safety critic to train policy
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Demonstrator: Drone - Task and Motion Planning

Delivery Drone  

in Urban Environments 

AMAZON 

Path Planning Around Buildings 

Under Uncertainty 

AAAI 2022

Uncertain MDP
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Demonstrator: Satellite - Planning and Collision Avoidance

Spacecraft Operations in  

Crowded Environments 

NASA 

Orbit Switches and  

Collision Avoidance 

AAAI 2021

Uncertain Partially  

Observable MDP

<latexit sha1_base64="inFPduQNqD/yLvnCGoi0gfHhemQ="></latexit>

s0

s1

s2

s3

s4

s5 s6

s7a

[ 1
3
,
2

3
]

[0.1, 1

3
]

a

[0.2, 1

2
]

[ 1
2
, 1]

a

up

down

down

up

up

down
a

a



Decision under Uncertainty - Nils Jansen

Demonstrator: Autonomous Car - Safe Decision Making

Self-driving Car With 

Imprecise Sensors 

The Guardian

Safe Decision-Making  

Under Partial Information 

RSS 2021

Partially Observable 

Stochastic Game 
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Relevance for Industry?
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Selected Theses Projects
Formal  

Verification

Machine Learning 

and AI

Industrial 

Applications

Games

Convex 

Optimization

• Convex optimization for uncertain Markov decision processes 

Bachelor 2018, IJCAI 2019


• Human-in-the-loop strategy synthesis: PAC-MAN verified 

Bachelor 2019


• Routing Algorithms for Autonomous Agricultural Vehicles 

Bachelor 2019


• Robust Convex Optimization for Uncertain Partially Observable Markov Decision Processes 

Master 2019, IJCAI 2020


• Entropy-guided decision making in multiple-environment Markov decision processes 

Master 2020


• Approximating Black-Box Deep Neural Networks using Active Learning as a Proxy 

Measurement for Robustness 

Master 2020


• Grouping of Maintenance Actions on Sewer Pipes: Using Deep Reinforcement Learning and 

Graph Neural Networks 


Master 2021, ICAART 2022 

• Safe Reinforcement Learning From Pixels Using a Stochastic Latent Representation


Master 2022, ICLR 2023
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Learning From Human Data
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Side Information for RL Agents
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Literature

Thom S. Badings, Thiago D. Simão, Marnix Suilen, Nils Jansen:

Decision-making under uncertainty: beyond probabilities. Int. J. Softw. Tools Technol. 

Transf. 25(3): 375-391 (2023)
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Challenge 1: How to obtain a model for an AI system under 

(epistemic) uncertainty?

Challenge 2: How to explore an uncertain environment 

safely?

Challenge 3: How to actively exploit an autonomous 

system’s sensing capabilities?

Challenge 4: How to plan for an autonomous system if only 

limited data is available?

Challenges for AI in Robotics

Challenge 6: Neurosymbolic AI: How to learn and verify 

explainable controllers?

Challenge 5: How to provide safety guarantees if we are 

dealing with realistic continuous spaces?



Coming: Programmatic RL  
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Agent

Formal Model
Probabilistic Programming 

Language



The key objective of the DEUCE 

project is to elevate the 

state-of-the-art in safe and correct 

decision-making for AI systems.

Uncertainty and Partial 

Information
Continuous Spaces (Safe) Reinforcement 

Learning

DEUCE.
Data-Driven Verifica2on 

and Learning under Uncertainty.

I WANT YOU FOR NEUROSYMBOLIC AI! 

(a.k.a. we’re hiring!)
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Thanks for the slides!

Marnix Suilen

https://www.marnixsuilen.nl/
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Summary and Vision

• Tightly integrated and novel learning and verification methods 

that are dedicated to AI systems


• Fundamental scientific research that elevates the state-of-the-

art in formal verification and safe reinforcement learning


• Our vision of the future is to help developing data-driven 

systems whose decisions are known to be correct.

LearningVerification

Model

Nils Jansen


http://nilsjansen.org


n.jansen@rub.de



Markov decision processes



What is this lecture about? Probabilities!



The probabilistic model space

DTMCs
+ rewards

+ nondeterminism

+ continuous time

DTMC DTMRM

DTMDP DTMRDP

CTMC CTMRM

CTMDP CTMRDP

DTMC = Discrete-time Markov chain

DTMRM = Discrete-time Markov reward model

DTMDP = Discrete-time Markov decision process

DTMRDP = Discrete-time Markow reward decision process

CTMC = Continuous-time Markov chain

CTMRM = Continuous-time Markov reward model

CTMDP = Continuous-time Markov decision process

CTMRDP = Continuous-time Markow reward decision process



The Model Checking Flow

P≤0.1(F fail)

0.3

0.7

Probabilistic

Model Checker

e.g. PRISM

Probabilistic temporal

logic specification,

e.g. PCTL, CSL, LTL

Result

Quantitative results

Counterexamples

Probabilistic Model,

e.g. Markov chain

System

System

requirements



Probabilistic model checking involves . . .

• Construction of models

from a description in a high-level language

• Probabilistic model checking algorithms
• graph-theoretical algorithms

• for reachability, identifying strongly connected components, . . .

• numerical computation

• linear equation systems, linear optimization problems

• iterative methods, direct methods

• automata for regular languages

• sampling-based methods for approximate analysis

• Efficient implementation techniques

• essential for scalability to real-life applications

• symbolic data structures based on BDDs

• algorithms for model minimization, abstraction, . . .



Markov Decision Processes

Markov decision process (MDP) is a tuple (S,A, P ):

• S finite set of states,

• A finite set of actions,

• P : S ×A → D(S) transition function. s0 s1

s2s3
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Markov Decision Processes

Markov decision process (MDP) is a tuple (S,A, P ):

• S finite set of states,

• A finite set of actions,

• P : S ×A → D(S) transition function.

MDP with discounted reward is a tuple (S,A, P,R, γ):

• R : S ×A → R reward function,

• γ ∈ (0, 1) discount factor.
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Markov Decision Processes

Markov decision process (MDP) is a tuple (S,A, P ):

• S finite set of states,

• A finite set of actions,

• P : S ×A → D(S) transition function.

MDP with discounted reward is a tuple (S,A, P,R, γ):

• R : S ×A → R reward function,

• γ ∈ (0, 1) discount factor.

For simplicity, we often write P (s, a, s′) for the

probability P (s, a)(s′).

s0 s1

s2s3
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1a2
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Solving MDPs

Several approaches:

1. Value iteration

• approximate with iterative solution method

• corresponds to a fixed point computation

• preferable in practice, implemented in PRISM

2. Reduction to a linear programming (LP) problem

• solve with linear optimization techniques (Simplex algorithm)

• exact solution using well-known methods

• better (theoretical) complexity, good for small examples

3. Policy iteration

• iteration over policies.



Solving MDPs—Value Iteration

For an MDP (S,A, P,R, γ), the goal is to compute a policy π : S → A that maximizes

the expected discounted reward

E

[

∞
∑

t=0

γtrt

]

where rt is the reward collected at time t.



Solving MDPs—Value Iteration

For an MDP (S,A, P,R, γ), the goal is to compute a policy π : S → A that maximizes

the expected discounted reward

E

[

∞
∑

t=0

γtrt

]

where rt is the reward collected at time t.

Just as for reachability, memoryless deterministic policies are sufficient for optimizing

discounted reward.



Discounted value iteration

1. Initialize V0(s) = 0 for all s ∈ S, set a precision ε, error = 1.



Discounted value iteration

1. Initialize V0(s) = 0 for all s ∈ S, set a precision ε, error = 1.

2. Repeat until convergence (While error > ε):



Discounted value iteration

1. Initialize V0(s) = 0 for all s ∈ S, set a precision ε, error = 1.

2. Repeat until convergence (While error > ε):

• Update value function for each s ∈ S:

Vn+1(s) = max
a∈A

{

R(s, a) + γ
∑

s′∈S

P (s, a, s′)Vn(s
′)

}

,
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• Update error: error = max
s∈S

{|Vn+1(s)− Vn(s)|},



Discounted value iteration

1. Initialize V0(s) = 0 for all s ∈ S, set a precision ε, error = 1.

2. Repeat until convergence (While error > ε):

• Update value function for each s ∈ S:

Vn+1(s) = max
a∈A

{

R(s, a) + γ
∑

s′∈S

P (s, a, s′)Vn(s
′)

}

,

• Update error: error = max
s∈S

{|Vn+1(s)− Vn(s)|},

3. After convergence V ∗ is the optimal value function, and the associated optimal

policy π∗ can be found by

π∗(s) = argmax
a∈A

{

R(s, a) + γ
∑

s′∈S

P (s, a, s′)V ∗(s′)

}

.



Theory on value iteration

Value iteration is a fixed point operation of applying the Bellman operator the value

function:

Vn+1(s) = max
a∈A

{

R(s, a) + γ
∑

s′∈S

P (s, a, s′)Vn(s
′)

}

,

because of the discount factor γ ∈ (0, 1) this equation is a contraction mapping, with

a unique fixed point

V ∗(s) = max
a∈A

{

R(s, a) + γ
∑

s′∈S

P (s, a, s′)V ∗(s′)

}

.



Why rewards

Rewards allow for more complicated task specifications beyond reachability.

Optimal policies for (discounted) reward objectives exist, are memoryless deterministic,

and computable in polynomial time (via linear programming).

In contrast, LTL objectives are more expressive, but require (finite) memory policies

and are computationally more expensive.

Optimal policies for rewards are also learnable in a reinforcement learning setting.



Summary so far

What to remember:

• Definition of MDPs

• Solving MDPs

Where do the probabilities come from?



Learning probabilities from Data



Reinforcement learning (RL)

Reinforcement learning (RL) is a general technique to find a policy in an MDP where

the transition function is unknown.

Ä
Agent

policy π
~

Environment

MDP M

é state

J reward

q action



What will we learn?

This lecture considers models and algorithms for:

• How to learn probabilities from data,

• Robust MDPs: a more general MDP model where the transition function

is uncertain and only known to be in some set,

• Robust learning: using robust MDPs in an RL setting to account for statistical

errors and changing environments,

• UCRL2: an RL algorithm that uses optimism in the face of uncertainty to achieve

efficient data collection.
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Frequentist learning = counting!
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Suppose we have a state-action (s, a) pair with m successor states, and want to learn

the probabilities

P (s, a, s1), . . . , P (s, a, sm).



Frequentist Learning

Frequentist learning = counting!

Suppose we have a state-action (s, a) pair with m successor states, and want to learn

the probabilities

P (s, a, s1), . . . , P (s, a, sm).

Definition (Frequentist learning)

1. Take N samples of (s, a),

2. Count how many times we see successor state si, call this #(s, a, si),

3. We estimate P̃ (s, a, si) =
#(s,a,si)

N
.



Frequentist learning - why does this work?

An MDP is Markovian: transition probability P (s, a, si) is independent of all other

transition probabilities.



Frequentist learning - why does this work?

An MDP is Markovian: transition probability P (s, a, si) is independent of all other

transition probabilities.

P̃ (s, a, ·) forms a valid probability distribution:

N =
∑

j

#(s, a, sj) =⇒
∑

i

P̃ (s, a, si) =
∑

i

#(s, a, si)∑
j #(s, a, sj)

= 1.



Key problem in frequentist learning

Frequentist learning is sensitive to observations.



Key problem in frequentist learning

Frequentist learning is sensitive to observations.

If we do not observe a transition, we have #(s, a, si) = 0,

and then we learn P̃ (s, a, si) = 0.

What to do if we know that this transition exists, i.e., P (s, a, si) > 0?



Bayesian Learning

Bayesian learning allows us to incorporate prior knowledge.

General idea:

Posterior ∝ Prior · Likelihood.



Bayesian Learning

Bayesian learning allows us to incorporate prior knowledge.

General idea:

Posterior ∝ Prior · Likelihood.

Conjugate prior: for certain families of priors and likelihoods, the posterior distribution

is already known.

The Dirichlet distribution is conjugate to the multinomial likelihood (the probability of

counts):

Dirichlet ∝ Dirichlet ·Multinomial.
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Bayesian Learning

Bayesian learning starts again with counting in a data set.

Suppose we have a state-action (s, a) pair with m successor states, and want to learn

the probabilities

P (s, a, s1), . . . , P (s, a, sm).

Again we take N = #(s, a) samples and count how many times we see si:

ki = #(s, a, si).



Updating distributions

These counts have a multinomial likelihood

Mn(k1, . . . , km | P (s, a, ·)) ∝

m∏
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Updating distributions

These counts have a multinomial likelihood

Mn(k1, . . . , km | P (s, a, ·)) ∝

m∏

i=1

P (s, a, si)
ki .

The Dirichlet distribution is a conjugate prior to the multinomial likelihood:

Dir(P (s, a, ·) | α1, . . . , αm) ∝

m∏

i=1

P (s, a, si)
αi−1.

Given a prior Dirichlet distribution and a multinomial likelihood, we can update the

prior to a posterior Dirichlet distribution with

Dir(P (s, a, ·) | α1 + k1, . . . , αm + km).



MAP estimation

After computing the posterior distribution Dir(P (s, a, ·) | α1, . . . , αm), we derive point

estimates via the mode:

P̃ (s, a, si) =
αi − 1

(
∑m

j=1 αj)−m
.



Key problem in Bayesian learning

Bayesian learning (MAP estimation) can be heavily biased to the prior.

Hence, a challenge is choosing a good prior as starting point.



Key problem in Bayesian learning

Bayesian learning (MAP estimation) can be heavily biased to the prior.

Hence, a challenge is choosing a good prior as starting point.

A Dirichlet distribution with αi = αj for all i, j yields a uniform distribution.

The higher the values for αi, the more data you need to shift away from the prior.

Depending on the specific situation, better choices may exist!



Example

Suppose we want to learn

(s0, a1) in the MDP:
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Suppose N = 20, #(s0, a1, s1) = 13, #(s0, a1, s3) = 7.



Example

Suppose we want to learn

(s0, a1) in the MDP:

s0 s1

s2s3

a1

a2

0.7

0.3

0.1

0.9

a1

1a2

a2

a1

Suppose N = 20, #(s0, a1, s1) = 13, #(s0, a1, s3) = 7.
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Example

Suppose we want to learn

(s0, a1) in the MDP:

s0 s1

s2s3

a1

a2

0.7

0.3

0.1

0.9

a1

1a2

a2

a1

Suppose N = 20, #(s0, a1, s1) = 13, #(s0, a1, s3) = 7.

• Frequentist: P̃ (s0, a1, s1) =
13
20 = 0.65,

P̃ (s0, a1, s3) =
7
20 = 0.35.

• Bayesian: Assume prior Dirichlet distribution with

α1 = α3 = 10.

Posterior: α1 = 10 + 13, α3 = 10 + 7.

MAP-estimation:

P̃ (s0, a1, s1) =
22
38 = 0.579,

P̃ (s0, a1, s3) =
16
38 = 0.421.



Summary so far

What to remember:

• Solving MDPs

• Learning probabilities (frequentist & Bayesian),

Question: What about numerical imprecision and statistical errors?



Robust Markov Decision Processes



Robust MDPs

Robust MDPs extend MDPs by accounting for imprecision or ambiguity in the

transition function.



Robust MDPs

Let X be a set of variables. An uncertainty set is a non-empty set of variable

assignments subject to some constraints free to choose:

U = {f : X → R | constraints on f}.

Definition (Robust MDP)
A robust MDP is a tuple (S,A,P, R, γ) where

• S,A,R and γ are as for standard MDPs,

• P : U → (S ×A → D(S)) is the uncertain transition function.



The word robust

The word robust means (according to):

• Cambridge dictionary: (of an object or system) strong and unlikely to break or fail.

• Merriam Webster dictionary: (robust software) capable of performing without

failure under a wide range of conditions.

• Oxford Learner’s dictionaries: (of a system or an organization) strong and not

likely to fail or become weak.



Uncertainty Set

The uncertain transition function P is a set of standard transition functions

P : S ×A → D(S). We also write P ∈ P.



Uncertainty Set

The uncertain transition function P is a set of standard transition functions

P : S ×A → D(S). We also write P ∈ P.

It is convenient to define the set of variables to have a unique variable for each possible

transition of the robust MDP: X = {xsas′ | (s, a, s
′) ∈ S ×A× S}.

Example robust MDP with three different uncertainty sets:

s0

s1

s2

a

b

x0a1x0a0

x0b1

x0b2

1

x2a2
x2a0

U1 = {x0a1 ∈ [0.1, 0.9] ∧ x0b1 ∈ [0.1, 0.9] ∧ x2a0 ∈ [0.1, 0.9]}

U2 = {x0a1 ∈ [0.1, 0.4] ∧ x0b1 = 2x0a1 ∧ x2a0 ∈ [0.1, 0.9]}

U3 = {x0a1 ∈ [0.1, 0.4] ∧ x0b1 = 2x0a1 ∧ x2a0 = x0a1}



Semantics

Robust MDPs can be viewed as a game between the decision-maker and nature:

• At state s, the decision-maker chooses an action a,

• Nature chooses a transition function P ∈ P,

• The system moves to state s′ with probability P (s, a)(s′).

These game semantics are further specified by static and dynamic uncertainty and the

rectangularity of the uncertainty set.
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How nature chooses P ∈ P can be done in two different ways:
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Static and Dynamic uncertainty semantics

How nature chooses P ∈ P can be done in two different ways:

• Static: nature chooses a transition function P ∈ P at the start and from then on

always uses that P .

• Dynamic: nature is always free to choose a new P ∈ P at every step.

Note that this difference is only relevant in models with cycles, where the same state

(and action) can be visited multiple times.



Rectangularity

Rectangularity concerns independence between variables and their constraints in U .

(s, a)-Rectangularity: the variables that occur at (s, a) are unique for that state-action

pair and share no constraints with other (s′, a′).
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(s, a)-Rectangularity: the variables that occur at (s, a) are unique for that state-action

pair and share no constraints with other (s′, a′).

The uncertainty set factorizes over state-action pairs: U =
⊗

s,a Us,a.

Instead of choosing transition functions P ∈ P, nature may equivalently choose

individual probability distributions P (s, a) ∈ P(s, a).



Rectangularity

Rectangularity concerns independence between variables and their constraints in U .

(s, a)-Rectangularity: the variables that occur at (s, a) are unique for that state-action

pair and share no constraints with other (s′, a′).

The uncertainty set factorizes over state-action pairs: U =
⊗

s,a Us,a.

Instead of choosing transition functions P ∈ P, nature may equivalently choose

individual probability distributions P (s, a) ∈ P(s, a).

Other forms of rectangularity are:

• s-rectangularity: Independence between states, but possible dependencies between

different actions at a state.

• Non-rectangularity: Possible dependencies between nature’s choice across states.

Refer to parametric MDPs.



Solving robust MDPs

The decision-maker wants to maximize the expected discounted reward E
[
∑∞

t=0 γ
trt

]

.

How do we know which P ∈ P nature chooses? Assume the worst (or best):
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• The resulting expected reward and policy are robust: when we use this policy in

practice, the result can only be better than the worst-case.
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be worse than the best-case.



Solving robust MDPs

The decision-maker wants to maximize the expected discounted reward E
[
∑∞

t=0 γ
trt

]

.

How do we know which P ∈ P nature chooses? Assume the worst (or best):

• Worst-case: pessimistic; nature ‘works against’ the decision-maker.

• Objective: maxπ minP E [
∑

∞

t=0
γtrt].

• The resulting expected reward and policy are robust: when we use this policy in

practice, the result can only be better than the worst-case.

• Best-case: optimistic; nature ‘helps’ in maximizing the reward.

• Objective: maxπ maxP E [
∑

∞

t=0
γtrt].

• Resulting expected reward and policy are optimistic: in practice, the result can only

be worse than the best-case.

Game perspective: adversarial versus cooperative!



Rectangularity makes things easier

For MDPs, memoryless deterministic policies are optimal for discounted reward.



Rectangularity makes things easier

For MDPs, memoryless deterministic policies are optimal for discounted reward.

For robust MDPs, Wiesemann (2013) shows:

Uncertainty set & rectangularity Optimal policy class Policy evaluation

(s, a)-rectangular memoryless, deterministic Polynomial

Convex s-rectangular memoryless, randomized Polynomial

non-rectangular memory, randomized NP-hard



Rectangularity makes things easier

For MDPs, memoryless deterministic policies are optimal for discounted reward.

For robust MDPs, Wiesemann (2013) shows:

Uncertainty set & rectangularity Optimal policy class Policy evaluation

(s, a)-rectangular memoryless, deterministic Polynomial

Convex s-rectangular memoryless, randomized Polynomial

non-rectangular memory, randomized NP-hard

(s, a)-rectangular memoryless, deterministic NP-hard

Nonconvex s-rectangular memory, randomized NP-hard

non-rectangular memory, randomized NP-hard



(s, a)-Rectangularity makes things even easier

What about the difference between static and dynamic uncertainty?

Iyengar (2005) shows that in (s, a)-rectangular robust MDPs static and dynamic

uncertainty semantics coincide.

Theorem
Let M be an (s, a)-rectangular robust MDP. Let π∗

s and π∗
d be the optimal memoryless

deterministic policies for M under static (s) and dynamic (d) semantics. Then the

robust values of these two policies are the same:

min
P

Eπ∗

d

[

∞
∑

t=0

γtrt

]

= min
P

Eπ∗

s

[

∞
∑

t=0

γtrt

]

.



Robust dynamic programming

Under (s, a)-rectangularity, we can extend value iteration!

Recall, for standard MDPs, we have:

Vn+1(s) = max
a∈A

{

R(s, a) + γ
∑

s′∈S

P (s, a)(s′)Vn(s
′)

}

.



Robust dynamic programming

Under (s, a)-rectangularity, we can extend value iteration!

Recall, for standard MDPs, we have:

Vn+1(s) = max
a∈A

{

R(s, a) + γ
∑

s′∈S

P (s, a)(s′)Vn(s
′)

}

.

Now we need to place the worst-case P in the equation above:

Vn+1(s) = max
a∈A

{

R(s, a) + γ inf
P (s,a)∈P(s,a)

{

∑

s′∈S

P (s, a)(s′)Vn(s
′)

}}

.

Note that we use (s, a)-rectangularity.



Finding the worst-case

How do we find inf
P (s,a)∈P(s,a)

{
∑
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? Convexity!
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Can be solved in polynomial time via the interior point method.



Finding the worst-case

How do we find inf
P (s,a)∈P(s,a)

{
∑

s′∈S P (s, a)(s′)Vn(s
′)
}

? Convexity!

When P(s, a) is convex, this inner problem is a convex optimization problem.

Can be solved in polynomial time via the interior point method.

Resulting value and policy will be robust against any choice of nature.

The optimal robust policy is still found by storing the maximizing action at each state.



Finding the best-case

What about the best-case? Same idea:

Vn+1(s) = max
a∈A

{

R(s, a) + γ sup
P (s,a)∈P(s,a)

{

∑

s′∈S

P (s, a)(s′)Vn(s
′)

}}

Where sup
P (s,a)∈P(s,a)

{
∑

s′∈S P (s, a)(s′)Vn(s
′)
}

is again a convex optimization problem.

Resulting value and policy will be optimistic towards nature’s choice.

Optimism in the face of uncertainty!



Special sub-classes of robust MDPs

There are two special sub-classes of robust MDPs that are interesting because they are

easy to learn from data and their inner problem can be solved efficiently.

• Interval MDPs (IMDPs): each transition has a probability interval,

• L1 MDPs: each state-action pair has an uncertainty set around an

empirical distribution.



Interval MDPs & Robust Learning



Interval MDPs

Definition (IMDP)
An interval MDP (IMDP) is a tuple

(S,A, P , P ,R, γ) where

• S,A,R and γ are as for (robust) MDPs,
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1a2
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Definition (IMDP)
An interval MDP (IMDP) is a tuple

(S,A, P , P ,R, γ) where

• S,A,R and γ are as for (robust) MDPs,

• P assigns a lower bound to each transition:
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Interval MDPs

Definition (IMDP)
An interval MDP (IMDP) is a tuple

(S,A, P , P ,R, γ) where

• S,A,R and γ are as for (robust) MDPs,

• P assigns a lower bound to each transition:

P : S×A×S → [0, 1] with
∑

s′ P (s, a, s′) ≤ 1,

• P assigns an upper bound to each transition:

P : S×A×S → [0, 1] with
∑

s′ P (s, a, s′) ≥ 1,
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Interval MDPs

Definition (IMDP)
An interval MDP (IMDP) is a tuple

(S,A, P , P ,R, γ) where

• S,A,R and γ are as for (robust) MDPs,

• P assigns a lower bound to each transition:

P : S×A×S → [0, 1] with
∑

s′ P (s, a, s′) ≤ 1,

• P assigns an upper bound to each transition:

P : S×A×S → [0, 1] with
∑

s′ P (s, a, s′) ≥ 1,

• Each transition is assigned a valid interval:

∀(s, a, s′). 0 ≤ P (s, a, s′) ≤ P (s, a, s′) ≤ 1.

s0 s1

s2s3

a1

a2

[0.5, 0.8]

[0.2, 0.4]

[0.1, 0.7]

[0.4, 1.0]

a1

1a2

a2

a1



The uncertainty set of IMDPs

An IMDP is an (s, a)-rectangular robust MDP with

uncertain transition function P defined as the set of valid

probability distributions in the intervals:

P(s, a) =
{

P ∈ D(S) | ∀s′.P (s′) ∈
[

P (s, a)(s′), P (s, a)(s′)
]}

.

This set is a convex polytope.



Robust value iteration on IMDPs

A convex polytope is bounded subset of Rn defined by a set of linear inequalities.

Hence, the inner minimization problem can be solved by linear programming in

polynomial time.

Yet, more efficient algorithms exist (not part of this lecture).



Robust learning

We use IMDPs to overcome statistical errors in learning.

Instead of learning point estimates as in frequentist or Bayesian learning, we learn

probability intervals.

The resulting model is an IMDP, and a worst-case value and policy will account for

those errors.



Robust learning

We use IMDPs to overcome statistical errors in learning.

Instead of learning point estimates as in frequentist or Bayesian learning, we learn

probability intervals.

The resulting model is an IMDP, and a worst-case value and policy will account for

those errors.

We consider two ways of learning intervals:

1. PAC learning: gives a formal correctness guarantee on the result,

2. Linearly updating intervals: no formal guarantees, but fast and flexible.
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PAC Learning

Probably approximately correct (PAC) learning: formal guarantee on the result.

We construct an IMDP with the following intervals:

1. Compute point estimates via frequentist or Bayesian learning

for every transition (s, a, s′),

2. Choose an error rate ε ∈ (0, 1), and compute the error rate for the whole model:

εM = ε/
∑

s,a |Post(s,a)>1|, where |Post>1(s, a)| is the number of successor states of

(s, a) with probabilities in (0, 1). Then use εM to compute δM =
√

log(2/εM )/2N.

3. For each transition, construct the interval P̃ (s, a, s′)± δM :

P (s, a, s′) = P (s, a, s′)− δM , P (s, a, s′) = P (s, a, s′) + δM .

Then with probability of at least 1− ε the true MDP M is contained in the IMDP M:

Pr(M ∈ M) ≥ 1− ε.



Example

Suppose we want to learn

(s0, a1) in the MDP:
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Suppose we have N = 20, P̃ (s0, a1, s1) = 0.65,

P̃ (s0, a1, s3) = 0.35, and set ε = 0.01.



Example

Suppose we want to learn

(s0, a1) in the MDP:

s0 s1

s2s3

a1

a2

0.7

0.3

0.1

0.9

a1

1a2

a2

a1

Suppose we have N = 20, P̃ (s0, a1, s1) = 0.65,

P̃ (s0, a1, s3) = 0.35, and set ε = 0.01.

•

∑

s,a |Post>1(s, a)| = 2 + 2 = 4,



Example

Suppose we want to learn

(s0, a1) in the MDP:

s0 s1

s2s3

a1

a2

0.7

0.3

0.1

0.9

a1

1a2

a2

a1

Suppose we have N = 20, P̃ (s0, a1, s1) = 0.65,

P̃ (s0, a1, s3) = 0.35, and set ε = 0.01.

•

∑

s,a |Post>1(s, a)| = 2 + 2 = 4,

• εM = 0.0025, δM =

√

log(2/εM )
2N = 0.409,



Example

Suppose we want to learn

(s0, a1) in the MDP:

s0 s1

s2s3

a1

a2

0.7

0.3

0.1

0.9

a1

1a2

a2

a1

Suppose we have N = 20, P̃ (s0, a1, s1) = 0.65,

P̃ (s0, a1, s3) = 0.35, and set ε = 0.01.

•

∑

s,a |Post>1(s, a)| = 2 + 2 = 4,

• εM = 0.0025, δM =

√

log(2/εM )
2N = 0.409,

• P (s0, a1, s1) = 0.65− 0.409 = 0.241,

• P (s0, a1, s1) = 0.65 + 0.409 = 1.059 ≡ 1.0,

• P (s0, a1, s3) = 0.35− 0.409 = −0.059 ≡ 0.0,

• P (s0, a1, s3) = 0.35 + 0.409 = 0.759.

Note that values are forced into the [0, 1] interval.



Key problems in PAC learning

1. The amount of data required for useful guarantees is enormous,

2. PAC learning assumes the underlying distribution(s) are fixed.
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Linearly updating intervals (LUI): no formal guarantees, but fast and flexible when

underlying distributions change.



Linearly Updating Intervals

Linearly updating intervals (LUI): no formal guarantees, but fast and flexible when

underlying distributions change.

We assume two intervals for each transition:

1. An interval of prior transition probabilities [P (s, a, s′), P (s, a, s′)],

2. A strength interval [n(s, a, s′), n(s, a, s′)].

(1) Serves as prior that will be updated,

(2) Controls how much data we need.



LUI Computation

Assume we want to update transitions (s, a, s1), . . . , (s, a, sm).
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kj
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LUI Computation

Assume we want to update transitions (s, a, s1), . . . , (s, a, sm).

1. Collect data, and let N = #(s, a) and ki = #(s, a, si)

2. Update lower bound:

P (s, a, si)
′ =







n(s,a,si)P (s,a,si)+ki
n(s,a,si)+N if ∀j.

kj
N ≥ P (s, a, sj) (prior-data agreement),

n(s,a,si)P (s,a,si)+ki
n(s,a,si)+N if ∃j.

kj
N < P (s, a, sj) (prior-data conflict).

3. Update upper bound:

P (s, a, si)
′ =







n(s,a,si)P (s,a,si)+ki
n(s,a,si)+N if ∀j.

kj
N ≤ P (s, a, sj) (prior-data agreement),

n(s,a,si)P (s,a,si)+ki
n(s,a,si)+N if ∃j.

kj
N > P (s, a, sj) (prior-data conflict).

4. Return updated transitions [P (s, a, ·)′, P (s, a, ·)′]

and strengths [n(s, a, ·) +N,n(s, a, ·) +N ].



Example (single interval)

Prior strength estimate posterior strength

[0.0, 1.0] [0, 10] 1
2 [0.083, 0.917] [2, 12]

[0.0, 1.0] [0, 10] 50
100 [0.45, 0.55] [100, 110]

[0.0, 1.0] [0, 1000] 50
100 [0.045, 0.95] [100, 1100]

[0.4, 0.6] [0, 10] 1
1 [0.45, 1.0] [1, 11]

[0.4, 0.6] [10, 100] 1
1 [0.406, 0.636] [11, 101]



Robust learning

PAC and LUI learning can be included in an RL-like scheme where we:

1. Collect data,

2. Learn an IMDP,

3. Compute a robust value and policy,

4. Repeat until convergence.

That way, at any time, we have a policy that is robust against the uncertainty from

statistical errors and insufficient data.



Summary so far

What to remember:

• Robust MDPs, robust value iteration, especially IMDPs,

• Learning probabilities (frequentist & Bayesian),

• Learning intervals (PAC and LUI),



L1 MDPs & Reinforcement Learning
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The L1-distance between two distributions is ‖ P −Q ‖1=
∑

s |P (s)−Q(s)|.
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An L1 MDP is a tuple (S,A, P̃ , d, R, γ) where
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• P̃ : S ×A → D(S) is an estimated transition function,

• d : S ×A → R≥0 is a distance bound for each state-action pair.



L1 MDPs

The L1-distance between two distributions is ‖ P −Q ‖1=
∑

s |P (s)−Q(s)|.

Definition (L1 MDP)
An L1 MDP is a tuple (S,A, P̃ , d, R, γ) where

• S,A,R and γ are as in (robust) MDPs,

• P̃ : S ×A → D(S) is an estimated transition function,

• d : S ×A → R≥0 is a distance bound for each state-action pair.

An L1 MDP is a robust MDP where the uncertainty set P is the set of all distributions

with L1-distance closer than d to P̃ :

P(s, a) =
{

P (s, a) ∈ D(S) | ‖ P (s, a)− P̃ (s, a) ‖1≤ d(s, a)
}

.

This is again a convex polytope.



L1 MDPs - application

L1 MDPs are commonly used in reinforcement learning algorithms.

One such algorithm is the UCRL2 algorithm (Jaksch, Ortner, and Auer, 2010).



L1 MDPs - application

L1 MDPs are commonly used in reinforcement learning algorithms.

One such algorithm is the UCRL2 algorithm (Jaksch, Ortner, and Auer, 2010).

UCRL2 is a model-based, optimistic, algorithm that uses L1 MDPs as intermediate

models to guide exploration: optimism in the face of uncertainty.

We discuss a simplified version that only learns transition probabilities.



UCRL2 - the general idea

Initialize: set confidence parameter δ ∈ (0, 1) and time counter t = 1.



UCRL2 - the general idea

Initialize: set confidence parameter δ ∈ (0, 1) and time counter t = 1.

1. Build L1 MDP with

P̃ (s, a, s′) =
#(s, a, s′)

max{1,#(s, a)}
, d(s, a) =

√

14|S| log(|A|tk/δ)

max{1,#(s, a)}
,

2. Compute optimistic policy π (next slide),

3. Sample data using π,

4. Repeat.



Solving the optimistic inner problem efficiently (L1 MDPs)

For UCRL2 we need to compute the optimistic value and policy:

Vn+1(s) = max
a∈A

{

R(s, a) + γ sup
P (s,a)∈P(s,a)

{

∑

s′∈S

P (s, a)(s′)Vn(s
′)

}}



Solving the optimistic inner problem efficiently (L1 MDPs)

For UCRL2 we need to compute the optimistic value and policy:

Vn+1(s) = max
a∈A

{

R(s, a) + γ sup
P (s,a)∈P(s,a)

{

∑

s′∈S

P (s, a)(s′)Vn(s
′)

}}

To do so, we have a similar algorithm as for IMDPs:

1. Order s1, . . . , sm such that Vn(s1) ≥ · · · ≥ Vn(sm),

2. Set P (s1) = min{1, P̃ (s1) + d/2} and for j > 1: P (sj) = P̃ (sj),

3. l = m,

4. While
∑

j P (sj) > 1:

• P (sl) = max{0, 1−
∑

j 6=l P (sj)},

• l = l − 1,

5. Return P .



UCRL2 - full algorithm

Set δ ∈ (0, 1), t = 1, #(s, a) = 0, #(s, a, s′) = 0,

For episode k = 1, 2, . . . , do:



UCRL2 - full algorithm

Set δ ∈ (0, 1), t = 1, #(s, a) = 0, #(s, a, s′) = 0,

For episode k = 1, 2, . . . , do:

1. Build L1 MDP at episode k:

1.1 tk = t,

1.2 P̃ (s, a, s′) = #(s,a,s′)
max{1,#(s,a)} , d(s, a) =

√

14|S| log(|A|tk/δ)
max{1,#(s,a)}

1.3 Compute optimistic policy πk in L1 MDP (S,A, P̃ , d, R, γ),

2. Sampling:

2.1 Set local counters ∀(s, a, s′) : vk(s, a) = 0, vk(s, a, s
′) = 0,

2.2 While vk(s, πk(s)) < max{1,#(s, πk(s))}:

• Execute action a = πk(s), update counter vk(s, a) = vk(s, a) + 1

• Observe successor state s
′, update counter vk(s, a, s

′) = vk(s, a, s
′) + 1,

• Set s′ as the current state: s = s
′, update t = t+ 1,

2.3 End episode k, update global counters #(s, a)+= vk(s, a), #(s, a, s′)+= vk(s, a, s
′)



Comparison of different learning methods



Robustness in changing environments



Summary

What to remember:

• Robust MDPs, robust value iteration, especially IMDPs and L1 MDPs,

• Learning probabilities (frequentist & Bayesian),

• Learning intervals (PAC and LUI),

• Reinforcement learning: UCRL2.

What if the state of the MDP is not fully observable?



(Optional) Reading material

•

• Iyengar, G. Robust Dynamic Programming. Mathematics of Operations Research.

2005.

• Wiesemann, W., Kuhn, D., & Rustem, B. Robust Markov Decision Processes.

Mathematics of Operations Research. 2013.

• Suilen, M., Simão, T. D., Parker, D., & Jansen, N. Robust Anytime Learning of

Markov Decision Processes. Advances in Neural Information Processing Systems

(NeurIPS). 2022.

• Jaksch, T., Ortner, R., & Auer, P. Near-optimal Regret Bounds for Reinforcement

Learning. Journal of Machine Learning Research. 2010.
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POMDPs

Partially observable MDPs (POMDPs) are an extension of MDPs with an observation

function.
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Partially observable MDPs (POMDPs) are an extension of MDPs with an observation

function.

Definition (POMDP)
A POMDP is a tuple (S, A, P, s0, R, Z , O) = (M, Z , O) where

• M = (S, A, P, s0) is an MDP,

• Z is a finite set of observations,

• O : S × A → D(Z ) is the probabilistic observation function.
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POMDPs

Partially observable MDPs (POMDPs) are an extension of MDPs with an observation

function.

Definition (POMDP)
A POMDP is a tuple (S, A, P, s0, R, Z , O) = (M, Z , O) where

• M = (S, A, P, s0) is an MDP,

• Z is a finite set of observations,

• O : S × A → D(Z ) is the probabilistic observation function.

Often we restrict to POMDPs with deterministic observations: O : S × A → Z .

Every POMDP with randomized observations can be transformed into a (larger)

POMDP with deterministic observations.

2



Why POMDPs?

Rich framework with many realistic applications: robotics, healthcare, aircraft collision

avoidance, ...

Partial observability is everywhere: sensors have imprecisions, vision is limited, ...

“We cannot avoid POMDPs, however, because the real world is one.”

— from Artificial Intelligence: A Modern Approach by Peter Norvig and Stuart Russel
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Paths through POMDPs

In an MDP, a path is a sequence of states and actions: (s0, a0, s1, a1, . . . ) ∈ (S × A)∗.
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In an MDP, a path is a sequence of states and actions: (s0, a0, s1, a1, . . . ) ∈ (S × A)∗.

In a POMDP, the states cannot be observed, instead we have observations:

(z0, a0, z1, a1, . . . ) ∈ (Z × A)∗. This is called an observation sequence.
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Paths through POMDPs

In an MDP, a path is a sequence of states and actions: (s0, a0, s1, a1, . . . ) ∈ (S × A)∗.

In a POMDP, the states cannot be observed, instead we have observations:

(z0, a0, z1, a1, . . . ) ∈ (Z × A)∗. This is called an observation sequence.

Each observation may have multiple underlying states, and each state may have

multiple observations (chosen probabilistically).

4



Solving (PO)MDP

The problems we are interested in for POMDPs are essentially the same as for MDPs:

Given a (PO)MDP M and a temporal logic or expected reward specification ϕ,

compute a policy π such that Mπ |= ϕ.
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Solving (PO)MDP

The problems we are interested in for POMDPs are essentially the same as for MDPs:

Given a (PO)MDP M and a temporal logic or expected reward specification ϕ,

compute a policy π such that Mπ |= ϕ.

Theorem (Optimal policies for MDPs)
For MDPs with reachability or expected reward specifications, there exists an optimal

deterministic memoryless policy π : S → A.

In POMDPs, however, a policy needs to be observation based, as we cannot see the

states.

5



Optimal policies in POMDPs

For POMDPs, memoryless deterministic policies do not suffice.

We need (finite) memory observation-based policies: π : (Z × A)∗ × Z → A.

Key problem: trade-off between states with similar observations.

How much memory do we need?

6



Complexity of POMDPs

How much memory do we need?
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Complexity of POMDPs

How much memory do we need? Possibly infinite.
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Complexity of POMDPs

How much memory do we need? Possibly infinite.

Theorem (Complexity of POMDPs)
Computing an optimal policy (and the optimal value) for a quantitative specification in

a POMDP is undecidable.
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Complexity of POMDPs

Making the problem simpler helps (a little):

Theorem (Finite-horizon complexity of POMDPs)
Computing an optimal policy (and the optimal value) for a finite-horizon specification

(i.e. maximize the reachability of T within k steps) in a POMDP is PSPACE-complete.

Theorem (Almost-sure complexity of POMDPs)
Computing an optimal policy for almost-sure reachability specifications (P

=1(♦T )) is

EXPTIME-complete.

8



Solving POMDPs

Definition (Belief state & belief update)
A belief state (or just belief) b is a distribution over states: b ∈ D(S).

Upon taking an action a and receiving an observation z , the agent updates their belief

b to a new belief b′ via the belief update BU : D(S) × A × Z → D(S):

BU(b, a, z)(s ′) =

O(s ′, a)(z) ·
∑

s∈S

P(s, a)(s ′) · b(s)

∑

s′′∈S

O(s ′′, a)(z) ·
∑

s∈S

P(s, a)(s ′′) · b(s)

Using belief states, a POMDP can be mapped to a continuous-state fully observable

belief MDP.
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Belief MDPs

Definition (Belief MDP)
For a POMDP (S, A, P, R, Z , O) we define the belief MDP as a tuple (B, A, τ, ρ),

where

• B is the set of belief states: B = D(S),

• A is the set of actions,

• τ is the transition function defined as τ(b, a)(b′) =

∑

z∈Z

1[BU(b, a, z) = b′] ·
(

∑

s′′∈S

O(s ′′, a)(z) ·
∑

s∈S

P(s, a)(s ′′) · b(s)
)

• ρ : B × A → R≥0 is the reward function defined by

ρ(b, a) =
∑

s∈S

b(s) · R(s, a).

10



Belief MDP example (small)

Where b0 = {s0 7→ 1}, b1 = {s3 7→ 1}, b2 = {s1 7→ 0.5, s2 7→ 0.5}.
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Belief MDP example (big)
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Belief-support MDP

Sometimes a simpler notion of belief is sufficient.
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Belief-support MDP

Sometimes a simpler notion of belief is sufficient.

For almost-sure reachability (with probability 1), we do not care about the exact

probabilities, only the graph.

The support of a belief b is the set of states s ∈ S with b(s) > 0.

The belief-support MDP of a POMDP is the belief MDP, except with all possible

supports as states instead of belief states.

13



Solving POMDPs

A POMDP is a continuous state (belief) MDP.

A belief is a sufficient statistic for the entire history (observation sequence) that has

been generated so-far.

A belief-based policy π : D(S) → A computed on the belief MDP is thus also a policy

that maps observation sequences to actions π : (Z × A)∗ → A.

Hence, computing a policy on the belief MDP also gives a policy for the POMDP.

14



Other classes of policies for POMDPs

Besides belief-based policies, we can use other classes of finite-memory policies that

are easier to compute but may be sub-optimal.
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Other classes of policies for POMDPs

Besides belief-based policies, we can use other classes of finite-memory policies that

are easier to compute but may be sub-optimal.

• Randomized finite-memory: π : (Z × A)k−1 × Z → D(A),

• Deterministic finite-memory: π : (Z × A)k−1 × Z → A,

• Randomized memoryless: π : Z → D(A),

• Deterministic memoryless: π : Z → A.

Even computing the simplest classes (memoryless) is still NP-hard.
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POMDP policies: example

Find observation-based policies for

PMax(♦s7) that are:

• Deterministic memoryless:

• Randomized memoryless:

• Deterministic finite-memory:

• Randomized finite-memory:
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POMDP policies: example

Find observation-based policies for

PMax(♦s7) that are:

• Deterministic memoryless: always

choose up. Result: 2

3
.

• Randomized memoryless:

• Deterministic finite-memory:

• Randomized finite-memory:
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POMDP policies: example

Find observation-based policies for

PMax(♦s7) that are:

• Deterministic memoryless: always

choose up. Result: 2

3
.

• Randomized memoryless: choose up

with 1 − ε and down with ε. Result:

1 − ε.

• Deterministic finite-memory:

• Randomized finite-memory:
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POMDP policies: example

Find observation-based policies for

PMax(♦s7) that are:

• Deterministic memoryless: always

choose up. Result: 2

3
.

• Randomized memoryless: choose up

with 1 − ε and down with ε. Result:

1 − ε.

• Deterministic finite-memory: if we see yellow then blue choose up,

otherwise if #blue is even choose up and down if uneven. Result: 1.

• Randomized finite-memory:
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POMDP policies: example

Find observation-based policies for

PMax(♦s7) that are:

• Deterministic memoryless: always

choose up. Result: 2

3
.

• Randomized memoryless: choose up

with 1 − ε and down with ε. Result:

1 − ε.

• Deterministic finite-memory: if we see yellow then blue choose up,

otherwise if #blue is even choose up and down if uneven. Result: 1.

• Randomized finite-memory: if we see yellow then blue choose up,

otherwise randomize up and down with 0.5. Result: 1.
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POMDP policies: example

Find observation-based policies for

PMax(♦s7) that are:

• Deterministic memoryless: always

choose up. Result: 2

3
.

• Randomized memoryless: choose up

with 1 − ε and down with ε. Result:

1 − ε.

• Deterministic finite-memory: if we see yellow then blue choose up,

otherwise if #blue is even choose up and down if uneven. Result: 1.

• Randomized finite-memory: if we see yellow then blue choose up,

otherwise randomize up and down with 0.5. Result: 1.

In general: randomization can reduce the amount of memory needed!
16



Solving POMDPs: methods

Problem: most methods for computing policies (value iteration, point-based methods)

operate on the belief MDP and do not scale.

We will now look into two approaches:

1. QMDP,

2. Parametric Markov chains.

17



QMDP

QMDP is an algorithm to find sub-optimal belief-based policies for a POMDP.

Key advantage: the algorithm is very simple.
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QMDP

QMDP is an algorithm to find sub-optimal belief-based policies for a POMDP.

Key advantage: the algorithm is very simple.

Definition (QMDP Algorithm)

1. Find an optimal policy π∗ : S → A for the underlying MDP of the POMDP.

2. For each belief b ∈ D(S), weigh the actions of π∗ according to the belief:

π(b) =
∑

s

b(s) · π(s).

This yields a randomized belief-based policy π.

Small example: MDP policy π∗ : {s1 7→ a1, s2 7→ a2}. Belief b : {s1 7→ 0.8, s2 7→ 0.2},

then the belief-based POMDP policy π is given by:

π(b) = 0.8 · π(s1) + 0.2 · π(s2) = {a1 7→ 0.8, a2 7→ 0.2}
18



POMDPs and Parametric Markov Chains

19



Finite-state controllers

We can encode finite-memory into the state-space of a POMDP.

To do that, use a finite-state controller.

Definition (Finite-state controller (FSC))
A finite-state controller (FSC) is a tuple (N, nI , γ, δ), where

• N is a set of memory nodes. |N| = k means we have finite-memory of size k,

• ni ∈ N the initial memory node,

• γ : N × Z → D(A) is the action mapping,

• δ : N × Z × A → D(N) is the memory update function.

20



Encoding memory into a POMDP

Given a POMDP and an FSC, compute the product POMDP.

A memoryless policy on this product then corresponds to a k-finite-memory policy for

the original POMDP.

(Informal idea of product construction).

21



POMDPs ⇐⇒ pMCs

22



POMDPs ⇐⇒ pMCs

Replace actions by parameters, states with the same observation get the same

parameter.
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POMDPs ⇐⇒ pMCs

Given the pMC, use parameter synthesis to find a valuation for the parameters.
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POMDPs ⇐⇒ pMCs

Given the pMC, use parameter synthesis to find a valuation for the parameters.

Map the valuation back to the actions and you have a memoryless randomized policy!

Efficient convex optimization-based techniques for parameter synthesis make this

approach fast and scalable.

Downside: need to specify the amount of memory beforehand.
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Next Summary So far

POMDPs are very general models that capture a lot of scenarios and applications.

Hard to compute policies, but feasible, non-trivial, techniques exist.
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