
BDDs and their application in SMT solving

Jan Strejček

Masaryk University
Brno, Czechia

MOVEP 2024



Outline

1 binary decision diagrams (BDDs)

definition
operations on BDDs
libraries and applications

2 theory of bitvectors (BV)

the theory
applications
standard approach to SMT solving

3 BDD-based SMT solving of BV

naı̈ve algorithm
algorithm improvements
Q3B
based on joint work with Martin Jonáš
[SAT’16, SAT’17, ICTAC’18, IPL’18, CAV’19]

4 BONUS: DQBF and its BDD-based satisfiability solving

2/38



Outline

1 binary decision diagrams (BDDs)
definition
operations on BDDs
libraries and applications

2 theory of bitvectors (BV)

the theory
applications
standard approach to SMT solving

3 BDD-based SMT solving of BV

naı̈ve algorithm
algorithm improvements
Q3B
based on joint work with Martin Jonáš
[SAT’16, SAT’17, ICTAC’18, IPL’18, CAV’19]

4 BONUS: DQBF and its BDD-based satisfiability solving

2/38



Binary decision diagrams (BDDs)

investigated by Randal Bryant since 1986

”one of the only really fundamental data structures
that came out in the last twenty-five years”

Donald Knuth, 2008

3/38



Binary decision diagrams (BDDs)

investigated by Randal Bryant since 1986

”one of the only really fundamental data structures
that came out in the last twenty-five years”

Donald Knuth, 2008

3/38



Binary decision diagrams (BDDs)

A binary decision diagram (BDD) is a finite rooted directed acyclic graph with two
kinds of nodes and two kinds of edges:

each terminal node is labeled with 0 or 1,
each nonterminal node is labeled with a Boolean variable and has a low
successor and a high successor.

x

y

z z

z

y y

1 0

node v labeled with x

high successor of v low successor of v

4/38



Binary decision diagrams (BDDs)

A binary decision diagram (BDD) is a finite rooted directed acyclic graph with two
kinds of nodes and two kinds of edges:

each terminal node is labeled with 0 or 1,
each nonterminal node is labeled with a Boolean variable and has a low
successor and a high successor.

x

y

z z

z

y y

1 0

node v labeled with x

high successor of v low successor of v

4/38



Semantics of BDDs

a BDD with variables x1, . . . , xn describes a Boolean function f (x1, . . . , xn)

the value of f (x1, . . . , xn) is the value of the terminal node reached from the
root by following the high successor whenever the current variable is 1 and
the low successor otherwise

x

y

z z

z

y y

1 0

f (x , y , z) =


1 for x = 1, y = 1, z = 1

or x = 1, y = 0, z = 0
or x = 0, z = 0, y = 1

0 otherwise

alternatively, a BDD can represent the set of assignments leading to node 1

5/38



Semantics of BDDs

a BDD with variables x1, . . . , xn describes a Boolean function f (x1, . . . , xn)

the value of f (x1, . . . , xn) is the value of the terminal node reached from the
root by following the high successor whenever the current variable is 1 and
the low successor otherwise

x

y

z z

z

y y

1 0

f (x , y , z) =


1 for x = 1, y = 1, z = 1

or x = 1, y = 0, z = 0
or x = 0, z = 0, y = 1

0 otherwise

alternatively, a BDD can represent the set of assignments leading to node 1

5/38



Ordered BDD

A BDD is ordered if there exists a linear ordering < on its Boolean variables such
that the variables on each path from the root to a terminal node respect the order.

x

y

z z

z

y y

1 0

x < y < z x < z < y

not ordered

x

y

z z

y

z z

1 0

6/38



Ordered BDD

A BDD is ordered if there exists a linear ordering < on its Boolean variables such
that the variables on each path from the root to a terminal node respect the order.

x

y

z z

z

y y

1 0

x < y < z

x < z < y

not ordered

x

y

z z

y

z z

1 0

6/38



Ordered BDD

A BDD is ordered if there exists a linear ordering < on its Boolean variables such
that the variables on each path from the root to a terminal node respect the order.

x

y

z z

z

y y

1 0

x < y < z x < z < y

not ordered

x

y

z z

y

z z

1 0

6/38



Ordered BDD

A BDD is ordered if there exists a linear ordering < on its Boolean variables such
that the variables on each path from the root to a terminal node respect the order.

x

y

z z

z

y y

1 0

x < y < z x < z < y

not ordered

x

y

z z

y

z z

1 0

6/38



Reduced BDD

A BDD is reduced if it does not contain any nonterminal node with identical low
and high child and any isomorphic subgraphs.

x

y

z z

y

z z

1 0

x

y

z z

y

z

1 0

x

y

z z

y

1 0

a BDD can be reduced by merging all terminal nodes with the same label and
repeated applications of the following steps

1 remove each nonterminal node with identical low and high child and redirect
all incomming edges to the child

2 merge all nodes that have the same low child and the same high child

7/38



Reduced BDD

A BDD is reduced if it does not contain any nonterminal node with identical low
and high child and any isomorphic subgraphs.

x

y

z z

y

z z

1 0

x

y

z z

y

z

1 0

x

y

z z

y

1 0

a BDD can be reduced by merging all terminal nodes with the same label and
repeated applications of the following steps

1 remove each nonterminal node with identical low and high child and redirect
all incomming edges to the child

2 merge all nodes that have the same low child and the same high child
7/38



Reduced BDD

A BDD is reduced if it does not contain any nonterminal node with identical low
and high child and any isomorphic subgraphs.

x

y

z z

y

z z

1 0

x

y

z z

y

z

1 0

x

y

z z

y

1 0

a BDD can be reduced by merging all terminal nodes with the same label and
repeated applications of the following steps

1 remove each nonterminal node with identical low and high child and redirect
all incomming edges to the child

2 merge all nodes that have the same low child and the same high child
7/38



Reduced BDD

A BDD is reduced if it does not contain any nonterminal node with identical low
and high child and any isomorphic subgraphs.

x

y

z z

y

z z

1 0

x

y

z z

y

z

1 0

x

y

z z

y

1 0

a BDD can be reduced by merging all terminal nodes with the same label and
repeated applications of the following steps

1 remove each nonterminal node with identical low and high child and redirect
all incomming edges to the child

2 merge all nodes that have the same low child and the same high child
7/38



Properties of BDDs

we assume that all BDDs are reduced and ordered
for a fixed variable order, BDDs are a canonical representation of Boolean
functions, i.e., two Boolean functions are equivalent (regardless their
description) iff the corresponding BDDs are isomorphic

BDD size heavily depends on the considered variable order

x1

y1 y1

x2

y2 y2

1 0

(x1 ⇐⇒ y1) ∧ (x2 ⇐⇒ y2)

x1 < y1 < x2 < y2
→ linear size

x1

x2 x2

y1 y1 y1 y1

y2 y2

1 0

x1 < x2 < y1 < y2
→ exponential size

some BDDs are exponential in the number of variables regardless their order,
e.g., BDDs representing the ⌊n/2⌋-th bit of the product of two n-bit numbers

8/38



Properties of BDDs

we assume that all BDDs are reduced and ordered
for a fixed variable order, BDDs are a canonical representation of Boolean
functions, i.e., two Boolean functions are equivalent (regardless their
description) iff the corresponding BDDs are isomorphic
BDD size heavily depends on the considered variable order

x1

y1 y1

x2

y2 y2

1 0

(x1 ⇐⇒ y1) ∧ (x2 ⇐⇒ y2)

x1 < y1 < x2 < y2
→ linear size

x1

x2 x2

y1 y1 y1 y1

y2 y2

1 0

x1 < x2 < y1 < y2
→ exponential size

some BDDs are exponential in the number of variables regardless their order,
e.g., BDDs representing the ⌊n/2⌋-th bit of the product of two n-bit numbers

8/38



Properties of BDDs

we assume that all BDDs are reduced and ordered
for a fixed variable order, BDDs are a canonical representation of Boolean
functions, i.e., two Boolean functions are equivalent (regardless their
description) iff the corresponding BDDs are isomorphic
BDD size heavily depends on the considered variable order

x1

y1 y1

x2

y2 y2

1 0

(x1 ⇐⇒ y1) ∧ (x2 ⇐⇒ y2)

x1 < y1 < x2 < y2
→ linear size

x1

x2 x2

y1 y1 y1 y1

y2 y2

1 0

x1 < x2 < y1 < y2
→ exponential size

some BDDs are exponential in the number of variables regardless their order,
e.g., BDDs representing the ⌊n/2⌋-th bit of the product of two n-bit numbers

8/38



Construction of BDDs

BDDs for basic Boolean functions

true 1 false 0 x
x

1 0

negation ¬B

replace 1 with 0 and vice versa

x

y

z z

y

1 0

x

y

z z

y

0 1

9/38



Construction of BDDs

BDDs for basic Boolean functions

true 1 false 0 x
x

1 0

negation ¬B

replace 1 with 0 and vice versa

x

y

z z

y

1 0

x

y

z z

y

0 1

9/38



Construction of BDDs

BDDs for basic Boolean functions

true 1 false 0 x
x

1 0

negation ¬B

replace 1 with 0 and vice versa

x

y

z z

y

1 0

x

y

z z

y

0 1

9/38



Operations on BDDs

binary operation B ⋆ D for ⋆ ∈ {∧,∨, xor , . . .}

1 b ⋆ d where b,d ∈ {0,1} b ⋆ d

2

x

B1 B0

⋆

x

D1 D0

x

B1 ⋆ D1 B0 ⋆ D0

3

x

B1 B0

⋆ D with root labeled
by x ′ > x or terminal

x

B1 ⋆ D B0 ⋆ D

4

x ′

D1 D0

⋆B with root labeled
by x > x ′ or terminal

x ′

B ⋆ D1 B ⋆ D0

5 reduce the resulting BDD

10/38



Operations on BDDs

binary operation B ⋆ D for ⋆ ∈ {∧,∨, xor , . . .}

1 b ⋆ d where b,d ∈ {0,1} b ⋆ d

2

x

B1 B0

⋆

x

D1 D0

x

B1 ⋆ D1 B0 ⋆ D0

3

x

B1 B0

⋆ D with root labeled
by x ′ > x or terminal

x

B1 ⋆ D B0 ⋆ D

4

x ′

D1 D0

⋆B with root labeled
by x > x ′ or terminal

x ′

B ⋆ D1 B ⋆ D0

5 reduce the resulting BDD

10/38



Operations on BDDs

binary operation B ⋆ D for ⋆ ∈ {∧,∨, xor , . . .}

1 b ⋆ d where b,d ∈ {0,1} b ⋆ d

2

x

B1 B0

⋆

x

D1 D0

x

B1 ⋆ D1 B0 ⋆ D0

3

x

B1 B0

⋆ D with root labeled
by x ′ > x or terminal

x

B1 ⋆ D B0 ⋆ D

4

x ′

D1 D0

⋆B with root labeled
by x > x ′ or terminal

x ′

B ⋆ D1 B ⋆ D0

5 reduce the resulting BDD

10/38



Operations on BDDs

binary operation B ⋆ D for ⋆ ∈ {∧,∨, xor , . . .}

1 b ⋆ d where b,d ∈ {0,1} b ⋆ d

2

x

B1 B0

⋆

x

D1 D0

x

B1 ⋆ D1 B0 ⋆ D0

3

x

B1 B0

⋆ D with root labeled
by x ′ > x or terminal

x

B1 ⋆ D B0 ⋆ D

4

x ′

D1 D0

⋆B with root labeled
by x > x ′ or terminal

x ′

B ⋆ D1 B ⋆ D0

5 reduce the resulting BDD

10/38



Operations on BDDs

binary operation B ⋆ D for ⋆ ∈ {∧,∨, xor , . . .}

1 b ⋆ d where b,d ∈ {0,1} b ⋆ d

2

x

B1 B0

⋆

x

D1 D0

x

B1 ⋆ D1 B0 ⋆ D0

3

x

B1 B0

⋆ D with root labeled
by x ′ > x or terminal

x

B1 ⋆ D B0 ⋆ D

4

x ′

D1 D0

⋆B with root labeled
by x > x ′ or terminal

x ′

B ⋆ D1 B ⋆ D0

5 reduce the resulting BDD

10/38



Example

x

y

z z

y

1 0

∧ =y

z

1 0

x

∧y

z z

1 0

y

z

1 0

∧

z

y

1 0

y

z

1 0

y

∧z

1 0

1 ∧z

1 0

z

1 0

z

1 ∧ 1 0 ∧ 11 0

z

0 ∧ 1 1 ∧ 00 0

y

∧z

1 0

1 ∧0 z

1 0

z

0 ∧ 1 1 ∧ 10 1

z

0 ∧ 1 0 ∧ 00 0

y y

z z

1 0

11/38



Example

x

y

z z

y

1 0

∧ =y

z

1 0

x

∧y

z z

1 0

y

z

1 0

∧

z

y

1 0

y

z

1 0

y

∧z

1 0

1 ∧z

1 0

z

1 0

z

1 ∧ 1 0 ∧ 11 0

z

0 ∧ 1 1 ∧ 00 0

y

∧z

1 0

1 ∧0 z

1 0

z

0 ∧ 1 1 ∧ 10 1

z

0 ∧ 1 0 ∧ 00 0

y y

z z

1 0

11/38



Example

x

y

z z

y

1 0

∧ =y

z

1 0

x

∧y

z z

1 0

y

z

1 0

∧

z

y

1 0

y

z

1 0

y

∧z

1 0

1 ∧z

1 0

z

1 0

z

1 ∧ 1 0 ∧ 11 0

z

0 ∧ 1 1 ∧ 00 0

y

∧z

1 0

1 ∧0 z

1 0

z

0 ∧ 1 1 ∧ 10 1

z

0 ∧ 1 0 ∧ 00 0

y y

z z

1 0

11/38



Example

x

y

z z

y

1 0

∧ =y

z

1 0

x

∧y

z z

1 0

y

z

1 0

∧

z

y

1 0

y

z

1 0

y

∧z

1 0

1

∧z

1 0

z

1 0

z

1 ∧ 1 0 ∧ 1

1 0

z

0 ∧ 1 1 ∧ 00 0

y

∧z

1 0

1 ∧0 z

1 0

z

0 ∧ 1 1 ∧ 10 1

z

0 ∧ 1 0 ∧ 00 0

y y

z z

1 0

11/38



Example

x

y

z z

y

1 0

∧ =y

z

1 0

x

∧y

z z

1 0

y

z

1 0

∧

z

y

1 0

y

z

1 0

y

∧z

1 0

1

∧z

1 0

z

1 0

z

1 ∧ 1 0 ∧ 1

1 0

z

0 ∧ 1 1 ∧ 00 0

y

∧z

1 0

1 ∧0 z

1 0

z

0 ∧ 1 1 ∧ 10 1

z

0 ∧ 1 0 ∧ 00 0

y y

z z

1 0

11/38



Example

x

y

z z

y

1 0

∧ =y

z

1 0

x

∧y

z z

1 0

y

z

1 0

∧

z

y

1 0

y

z

1 0

y

∧z

1 0

1 ∧z

1 0

z

1 0

z

1 ∧ 1 0 ∧ 1

1 0

z

0 ∧ 1 1 ∧ 0

0 0

y

∧z

1 0

1 ∧0 z

1 0

z

0 ∧ 1 1 ∧ 10 1

z

0 ∧ 1 0 ∧ 00 0

y y

z z

1 0

11/38



Example

x

y

z z

y

1 0

∧ =y

z

1 0

x

∧y

z z

1 0

y

z

1 0

∧

z

y

1 0

y

z

1 0

y

∧z

1 0

1 ∧z

1 0

z

1 0

z

1 ∧ 1 0 ∧ 1

1 0

z

0 ∧ 1 1 ∧ 0

0 0

y

∧z

1 0

1 ∧0 z

1 0

z

0 ∧ 1 1 ∧ 10 1

z

0 ∧ 1 0 ∧ 00 0

y y

z z

1 0

11/38



Example

x

y

z z

y

1 0

∧ =y

z

1 0

x

∧y

z z

1 0

y

z

1 0

∧

z

y

1 0

y

z

1 0

y

∧z

1 0

1 ∧z

1 0

z

1 0

z

1 ∧ 1 0 ∧ 1

1 0

z

0 ∧ 1 1 ∧ 0

0 0

y

∧z

1 0

1 ∧0 z

1 0

z

0 ∧ 1 1 ∧ 10 1

z

0 ∧ 1 0 ∧ 00 0

y y

z z

1 0

11/38



Example

x

y

z z

y

1 0

∧ =y

z

1 0

x

∧y

z z

1 0

y

z

1 0

∧

z

y

1 0

y

z

1 0

y

∧z

1 0

1 ∧z

1 0

z

1 0

z

1 ∧ 1 0 ∧ 1

1 0

z

0 ∧ 1 1 ∧ 0

0 0

y

∧z

1 0

1

∧0 z

1 0

z

0 ∧ 1 1 ∧ 1

0 1

z

0 ∧ 1 0 ∧ 00 0

y y

z z

1 0

11/38



Example

x

y

z z

y

1 0

∧ =y

z

1 0

x

∧y

z z

1 0

y

z

1 0

∧

z

y

1 0

y

z

1 0

y

∧z

1 0

1 ∧z

1 0

z

1 0

z

1 ∧ 1 0 ∧ 1

1 0

z

0 ∧ 1 1 ∧ 0

0 0

y

∧z

1 0

1

∧0 z

1 0

z

0 ∧ 1 1 ∧ 1

0 1

z

0 ∧ 1 0 ∧ 00 0

y y

z z

1 0

11/38



Example

x

y

z z

y

1 0

∧ =y

z

1 0

x

∧y

z z

1 0

y

z

1 0

∧

z

y

1 0

y

z

1 0

y

∧z

1 0

1 ∧z

1 0

z

1 0

z

1 ∧ 1 0 ∧ 1

1 0

z

0 ∧ 1 1 ∧ 0

0 0

y

∧z

1 0

1 ∧0 z

1 0

z

0 ∧ 1 1 ∧ 1

0 1

z

0 ∧ 1 0 ∧ 0

0 0

y y

z z

1 0

11/38



Example

x

y

z z

y

1 0

∧ =y

z

1 0

x

∧y

z z

1 0

y

z

1 0

∧

z

y

1 0

y

z

1 0

y

∧z

1 0

1 ∧z

1 0

z

1 0

z

1 ∧ 1 0 ∧ 1

1 0

z

0 ∧ 1 1 ∧ 0

0 0

y

∧z

1 0

1 ∧0 z

1 0

z

0 ∧ 1 1 ∧ 1

0 1

z

0 ∧ 1 0 ∧ 0

0 0

y y

z z

1 0

11/38



Example

x

y

z z

y

1 0

∧ =y

z

1 0

x

∧y

z z

1 0

y

z

1 0

∧

z

y

1 0

y

z

1 0

y

∧z

1 0

1 ∧z

1 0

z

1 0

z

1 ∧ 1 0 ∧ 11 0

z

0 ∧ 1 1 ∧ 00 0

y

∧z

1 0

1 ∧0 z

1 0

z

0 ∧ 1 1 ∧ 10 1

z

0 ∧ 1 0 ∧ 00 0

y y

z z

1 0

11/38



Operations on BDDs

variable instantiation B[xi ← b]
1 if the root is labeled with xi , then take the high successor as the root if b = 1

and the low successor otherwise
2 going from top to bottom, each edge leading to a node labeled with xi is

reconnected to its high successor if b = 1 and its low successor otherwise
3 unreachable nodes are removed and BDD is reduced

x

y

z z

y

1 0

set z to 1

x

y y

1 0

x

y

1 0

12/38



Operations on BDDs

variable instantiation B[xi ← b]
1 if the root is labeled with xi , then take the high successor as the root if b = 1

and the low successor otherwise
2 going from top to bottom, each edge leading to a node labeled with xi is

reconnected to its high successor if b = 1 and its low successor otherwise
3 unreachable nodes are removed and BDD is reduced

x

y

z z

y

1 0

set z to 1

x

y y

1 0

x

y

1 0

12/38



Operations on BDDs

variable instantiation B[xi ← b]
1 if the root is labeled with xi , then take the high successor as the root if b = 1

and the low successor otherwise
2 going from top to bottom, each edge leading to a node labeled with xi is

reconnected to its high successor if b = 1 and its low successor otherwise
3 unreachable nodes are removed and BDD is reduced

x

y

z z

y

1 0

set z to 1

x

y y

1 0

x

y

1 0

12/38



Operations on BDDs

variable instantiation B[xi ← b]
1 if the root is labeled with xi , then take the high successor as the root if b = 1

and the low successor otherwise
2 going from top to bottom, each edge leading to a node labeled with xi is

reconnected to its high successor if b = 1 and its low successor otherwise
3 unreachable nodes are removed and BDD is reduced

x

y

z z

y

1 0

set z to 1

x

y y

1 0

x

y

1 0

12/38



Operations on BDDs

quantifiers
∃x .B ≡ B[x ← 1] ∨ B[x ← 0]
∀x .B ≡ B[x ← 1] ∧ B[x ← 0]

complexity and implementation
all the mentioned operations need only polynomial time when applied to
BDDs with the same variable order (and when cache is used)

in implementations, each node in represented BDDs is stored only once
equivalence check is constant
a formula is satisfiable iff the corresponding BDD is not 0

x

y y

z z

1 0

x

y

z z

y

1 0

x x

y y y

z z

1 0

13/38



Operations on BDDs

quantifiers
∃x .B ≡ B[x ← 1] ∨ B[x ← 0]
∀x .B ≡ B[x ← 1] ∧ B[x ← 0]

complexity and implementation
all the mentioned operations need only polynomial time when applied to
BDDs with the same variable order (and when cache is used)

in implementations, each node in represented BDDs is stored only once
equivalence check is constant
a formula is satisfiable iff the corresponding BDD is not 0

x

y y

z z

1 0

x

y

z z

y

1 0

x x

y y y

z z

1 0

13/38



Operations on BDDs

quantifiers
∃x .B ≡ B[x ← 1] ∨ B[x ← 0]
∀x .B ≡ B[x ← 1] ∧ B[x ← 0]

complexity and implementation
all the mentioned operations need only polynomial time when applied to
BDDs with the same variable order (and when cache is used)
in implementations, each node in represented BDDs is stored only once

equivalence check is constant
a formula is satisfiable iff the corresponding BDD is not 0

x

y y

z z

1 0

x

y

z z

y

1 0

x x

y y y

z z

1 0
13/38



Operations on BDDs

quantifiers
∃x .B ≡ B[x ← 1] ∨ B[x ← 0]
∀x .B ≡ B[x ← 1] ∧ B[x ← 0]

complexity and implementation
all the mentioned operations need only polynomial time when applied to
BDDs with the same variable order (and when cache is used)
in implementations, each node in represented BDDs is stored only once
equivalence check is constant
a formula is satisfiable iff the corresponding BDD is not 0

x

y y

z z

1 0

x

y

z z

y

1 0

x x

y y y

z z

1 0
13/38



Libraries for BDDs and their applications

libraries
implementations use also negation flags on edges (increases the number of
isomorphic subgraphs)
optimized BDD libraries BuDDy, CUDD, Sylvan, Adiar,. . .
offer algorithms for automatic improvement of variable order (sifting)
support of other diagrams, e.g., zero-suppressed decision diagrams (ZDD)

applications
symbolic model checking
synthesis of logical circuits
used in other highly efficient libraries, e.g., in ω-automata library Spot
SAT and SMT solving

14/38



Libraries for BDDs and their applications

libraries
implementations use also negation flags on edges (increases the number of
isomorphic subgraphs)
optimized BDD libraries BuDDy, CUDD, Sylvan, Adiar,. . .
offer algorithms for automatic improvement of variable order (sifting)
support of other diagrams, e.g., zero-suppressed decision diagrams (ZDD)

applications
symbolic model checking
synthesis of logical circuits
used in other highly efficient libraries, e.g., in ω-automata library Spot
SAT and SMT solving

14/38



Outline

1 binary decision diagrams (BDDs)
definition
operations on BDDs
libraries and applications

2 theory of bitvectors (BV)
the theory
applications
standard approach to SMT solving

3 BDD-based SMT solving of BV

naı̈ve algorithm
algorithm improvements
Q3B
based on joint work with Martin Jonáš
[SAT’16, SAT’17, ICTAC’18, IPL’18, CAV’19]

4 BONUS: DQBF and its BDD-based satisfiability solving

15/38



Satisfiability solving

SAT solving
satisfiability of propositional formulae
Is

(
(x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ ¬y)

)
∧ (z ∨ y) satisfiable?

YES: x = 0, y = 0, z = 1
decidable, NP-complete

SMT solving
satisfiability of predicate formulae
Is ∀y (y ≥ 0 =⇒ ∃x . y = x · x) satisfiable/valid?
NO for integers, YES for reals
SMT = satisfiability modulo theory
decidability and complexity depends on the theory

16/38



Satisfiability solving

SAT solving
satisfiability of propositional formulae
Is

(
(x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ ¬y)

)
∧ (z ∨ y) satisfiable?

YES: x = 0, y = 0, z = 1
decidable, NP-complete

SMT solving
satisfiability of predicate formulae
Is ∀y (y ≥ 0 =⇒ ∃x . y = x · x) satisfiable/valid?
NO for integers, YES for reals
SMT = satisfiability modulo theory
decidability and complexity depends on the theory

16/38



Satisfiability solving

SAT solving
satisfiability of propositional formulae
Is

(
(x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ ¬y)

)
∧ (z ∨ y) satisfiable?

YES: x = 0, y = 0, z = 1
decidable, NP-complete

SMT solving
satisfiability of predicate formulae
Is ∀y (y ≥ 0 =⇒ ∃x . y = x · x) satisfiable/valid?

NO for integers, YES for reals
SMT = satisfiability modulo theory
decidability and complexity depends on the theory

16/38



Satisfiability solving

SAT solving
satisfiability of propositional formulae
Is

(
(x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ ¬y)

)
∧ (z ∨ y) satisfiable?

YES: x = 0, y = 0, z = 1
decidable, NP-complete

SMT solving
satisfiability of predicate formulae
Is ∀y (y ≥ 0 =⇒ ∃x . y = x · x) satisfiable/valid?
NO for integers, YES for reals
SMT = satisfiability modulo theory
decidability and complexity depends on the theory

16/38



Theory of fixed-size bitvectors

BV = theory of bitvectors / bitvector logic
multi-sorted first-order logic
for each n > 0, sort [n] = bitvectors of length n

functions
constants: 0[n],1[n], . . .
bit-wise logic operations: not[n],and[n],or[n]
arithmetic operations with overflows: +[n], ∗[n], /s

[n], /
u
[n] . . .

bit-wise left/right shift: shl[n],shr[n]
concatenation: concat[m,n]
extraction: extract[m,i,j]
[uninterpretted functions]

predicates
equality: =[n]
signed/unsigned less than (or equal): <s

[n], <
u
[n],≤

s
[n],≤

u
[n]

17/38



Theory of fixed-size bitvectors

BV = theory of bitvectors / bitvector logic
multi-sorted first-order logic
for each n > 0, sort [n] = bitvectors of length n

functions
constants: 0[n],1[n], . . .
bit-wise logic operations: not[n],and[n],or[n]
arithmetic operations with overflows: +[n], ∗[n], /s

[n], /
u
[n] . . .

bit-wise left/right shift: shl[n],shr[n]
concatenation: concat[m,n]
extraction: extract[m,i,j]
[uninterpretted functions]

predicates
equality: =[n]
signed/unsigned less than (or equal): <s

[n], <
u
[n],≤

s
[n],≤

u
[n]

17/38



Theory of fixed-size bitvectors

BV = theory of bitvectors / bitvector logic
multi-sorted first-order logic
for each n > 0, sort [n] = bitvectors of length n

functions
constants: 0[n],1[n], . . .
bit-wise logic operations: not[n],and[n],or[n]
arithmetic operations with overflows: +[n], ∗[n], /s

[n], /
u
[n] . . .

bit-wise left/right shift: shl[n],shr[n]
concatenation: concat[m,n]
extraction: extract[m,i,j]
[uninterpretted functions]

predicates
equality: =[n]
signed/unsigned less than (or equal): <s

[n], <
u
[n],≤

s
[n],≤

u
[n]

17/38



Applications of the theory

unsigned char x = input();
if (x > 100) {
unsigned char y = 4 * x + 1;
assert(x < y);

}

the assertion can be violated ⇐⇒

x[8] >u
[8] 100[8] ∧ ¬(x[8] <u

[8] 4[8] ∗[8] x[8] +[8] 1[8]) is satisfiable

QF BV = quantifier-free fragment of BV
verification of safety properties
automatic test generation
. . .

18/38



Applications of the theory

unsigned char x = input();
if (x > 100) {
unsigned char y = 4 * x + 1;
assert(x < y);

}

the assertion can be violated ⇐⇒

<u
[8]x >

u 100 ∧ ¬(x <u 4 ∗ x + 1) is satisfiable

QF BV = quantifier-free fragment of BV
verification of safety properties
automatic test generation
. . .

18/38



Applications of the theory

unsigned char x = input();
if (x > 100) {
unsigned char y = 4 * x + 1;
assert(x < y);

}

the assertion can be violated ⇐⇒

<u
[8]x >

u 100 ∧ ¬(x <u 4 ∗ x + 1) is satisfiable

QF BV = quantifier-free fragment of BV
verification of safety properties
automatic test generation
. . .

18/38



Applications of the theory

unsigned char x = input();
while (x != 0) {
x = x - 3;

}

the program always terminates ⇐⇒

∀x[8] ∃y[8] . x[8] −[8] 3[8] ∗[8] y[8] =[8] 0[8] is satisfiable/valid

proving termination
computation and application of loop summaries
program synthesis
. . .

19/38



Applications of the theory

unsigned char x = input();
while (x != 0) {
x = x - 3;

}

the program always terminates ⇐⇒

∀x ∃y . x − 3 ∗ y = 0 is satisfiable/valid

proving termination
computation and application of loop summaries
program synthesis
. . .

19/38



Applications of the theory

unsigned char x = input();
while (x != 0) {
x = x - 3;

}

the program always terminates ⇐⇒

∀x ∃y . x − 3 ∗ y = 0 is satisfiable/valid

proving termination
computation and application of loop summaries
program synthesis
. . .

19/38



Complexity of SMT solving of BV

uninterpreted
functions

encoding of bitvector lengths

unary binary

QF BV
no NP NEXPTIME
yes NP NEXPTIME

BV
no PSPACE AEXP(poly)
yes NEXPTIME 2−NEXPTIME

-complete in all cases
AEXP(poly) = problems solvable by alternating Turing machines with
polynomial number of alternations in exponential time
NEXPTIME ⊆ AEXP(poly) ⊆ EXPSPACE

20/38



Traditional approach to SMT solving of QF BV

bit-blasting and SAT solving
each bitvector variable x[n] can be seen as a sequence of n Boolean variables
xn−1xn−2 . . . x1x0

bitvector functions and relations can be transformed into Boolean operations

x[2] +[2] y[2] =[2] 1[2]y
“x1x0 + y1y0 = 01”y

(x0 ⇐⇒ ¬y0) ∧ (x1 ⇐⇒ y1)

21/38



Traditional approach to SMT solving of BV

quantifier instantiation ψ = ∀x∃y . φ(x , y)

∀x . φ(x , fy (x))

Skolemization

∀x . φ(x , t(x))

instantiate fy with a term t

(∃x .)¬φ(x , t(x))

negate

ψ is satisfiable

unsat

is there any other
term t to try? sat

ψ is unsatisfiable

no

yes

instantiate fy with term t

22/38



Traditional approach to SMT solving of BV

quantifier instantiation ψ = ∀x∃y . φ(x , y)

∀x . φ(x , fy (x))

Skolemization

∀x . φ(x , t(x))

instantiate fy with a term t

(∃x .)¬φ(x , t(x))

negate

ψ is satisfiable

unsat

is there any other
term t to try? sat

ψ is unsatisfiable

no

yes

instantiate fy with term t

22/38



Traditional approach to SMT solving of BV

quantifier instantiation ψ = ∀x∃y . φ(x , y)

∀x . φ(x , fy (x))

Skolemization

∀x . φ(x , t(x))

instantiate fy with a term t

(∃x .)¬φ(x , t(x))

negate

ψ is satisfiable

unsat

is there any other
term t to try? sat

ψ is unsatisfiable

no

yes

instantiate fy with term t

22/38



Traditional approach to SMT solving of BV

quantifier instantiation ψ = ∀x∃y . φ(x , y)

∀x . φ(x , fy (x))

Skolemization

∀x . φ(x , t(x))

instantiate fy with a term t

(∃x .)¬φ(x , t(x))

negate

ψ is satisfiable

unsat

is there any other
term t to try? sat

ψ is unsatisfiable

no

yes

instantiate fy with term t

22/38



Traditional approach to SMT solving of BV

quantifier instantiation ψ = ∀x∃y . φ(x , y)

∀x . φ(x , fy (x))

Skolemization

∀x . φ(x , t(x))

instantiate fy with a term t

(∃x .)¬φ(x , t(x))

negate

ψ is satisfiable

unsat

is there any other
term t to try? sat

ψ is unsatisfiable

no

yes

instantiate fy with term t

22/38



Traditional approach to SMT solving of BV

quantifier instantiation ψ = ∀x∃y . φ(x , y)

∀x . φ(x , fy (x))

Skolemization

∀x . φ(x , t(x))

instantiate fy with a term t

(∃x .)¬φ(x , t(x))

negate

ψ is satisfiable

unsat

is there any other
term t to try? sat

ψ is unsatisfiable

no

yes

instantiate fy with term t

22/38



Traditional approach to SMT solving of BV

quantifier instantiation ψ = ∀x∃y . φ(x , y)

∀x . φ(x , fy (x))

Skolemization

∀x . φ(x , t(x))

instantiate fy with a term t

(∃x .)¬φ(x , t(x))

negate

ψ is satisfiable

unsat

is there any other
term t to try? sat

ψ is unsatisfiable

no

yes

instantiate fy with term t

22/38



Traditional approach to SMT solving of BV

quantifier instantiation ψ = ∀x∃y . φ(x , y)

∀x . φ(x , fy (x))

Skolemization

∀x . φ(x , t(x))

instantiate fy with a term t

(∃x .)¬φ(x , t(x))

negate

ψ is satisfiable

unsat

is there any other
term t to try? sat

ψ is unsatisfiable

no

yes

instantiate fy with term t

22/38



Outline

1 binary decision diagrams (BDDs)
definition
operations on BDDs
libraries and applications

2 theory of bitvectors (BV)
the theory
applications
standard approach to SMT solving

3 BDD-based SMT solving of BV
naı̈ve algorithm
algorithm improvements
Q3B
based on joint work with Martin Jonáš
[SAT’16, SAT’17, ICTAC’18, IPL’18, CAV’19]

4 BONUS: DQBF and its BDD-based satisfiability solving

23/38



Naı̈ve algorithm

1 translate BV formula φ to BDD Bφ representing its models

2 check if Bφ represents some model, i.e., Bφ ̸= 0
YES: φ is satisfiable
NO: φ is unsatisfiable

24/38



BV formula to BDD bottom-up translation

a translate each term of type [n] into a vector of n of BDDs that represents the
function given by the term

5[3]

“101”
1 0 1

x0

1 0

x1

1 0

x2

1 0

x[3]

“x2x1x0”

25/38



BV formula to BDD bottom-up translation

a translate each term of type [n] into a vector of n of BDDs that represents the
function given by the term

5[3]

“101”
1 0 1

x0

1 0

x1

1 0

x2

1 0

x[3]

“x2x1x0”

25/38



BV formula to BDD bottom-up translation

a translate each term of type [n] into a vector of n of BDDs that represents the
function given by the term

5[3]

“101”
1 0 1

x0

1 0

x1

1 0

x2

1 0

x[3]

“x2x1x0”

25/38



BV formula to BDD bottom-up translation

a translate each term of type [n] into a vector of n of BDDs that represents the
function given by the term

x0

y0

x1 x1

y1

x2 x2

y2 y2

10

x0

y0

x1 x1

y1 y1

10

x0

y0 y0

10

x[3] +[3] y[3]

“x2x1x0 + y2y1y0”

25/38



BV formula to BDD bottom-up translation

b translate each atomic subformula to a single BDD representing its models

t[3]

t ′[3] B′
0

B0

B′
1

B1

B′
2

B2

t[3] =[3] t ′[3] (B2 ⇐⇒ B′
2) ∧ (B1 ⇐⇒ B′

1) ∧ (B0 ⇐⇒ B′
0)

26/38



BV formula to BDD bottom-up translation

b translate each atomic subformula to a single BDD representing its models

t[3]

t ′[3] B′
0

B0

B′
1

B1

B′
2

B2

t[3] =[3] t ′[3]

(B2 ⇐⇒ B′
2) ∧ (B1 ⇐⇒ B′

1) ∧ (B0 ⇐⇒ B′
0)

26/38



BV formula to BDD bottom-up translation

b translate each atomic subformula to a single BDD representing its models

t[3]

t ′[3] B′
0

B0

B′
1

B1

B′
2

B2

t[3] =[3] t ′[3] (B2 ⇐⇒ B′
2) ∧ (B1 ⇐⇒ B′

1) ∧ (B0 ⇐⇒ B′
0)

26/38



BV formula to BDD bottom-up translation

b translate each atomic subformula to a single BDD representing its models

5[3] 1 0 1

x0

1 0

x1

1 0

x2

1 0
x[3]

5[3] = x[3]

x0

x1

x2

10

26/38



BV formula to BDD bottom-up translation

c apply logical connectives and quantifiers of the formula to BDDs
corresponding to subformulae

∀x[3] . ψ process as ∀x2∀x1∀x0 .Bψ

27/38



Observations

the algorithm works well as long as the constructed BDDs are small
quantification of variables usually reduces the BDD size

1 10 103 105

1

10

102

103

104

105

106

Before quantification

A
ft

er
q
u

an
ti

fi
ca

ti
on

existential quantifier
universal quantifier

sizes of BDDs corresponding to all quantified
subformulas in SMT-LIB benchmarks for BV logic

28/38



Algorithm improvements

GOAL: reduce the size of constructed BDDs

modification of the input formula
move quantifiers downwards
eliminate variables or lower their bitwidth
simplify the formula

approximations using less Boolean variables
abstractions of bitvector operations with BDDs of limited size

29/38



Algorithm improvements: modifications of input formula

push quantifiers in the formula downwards (miniscoping)

∀x . φ(x) ∨ ψ ⇝ ∀x (φ(x)) ∨ ψ ∀x . φ(x) ∧ ψ(x) ⇝ ∀x (φ(x)) ∧ ∀x (ψ(x))
∃x . φ(x) ∧ ψ ⇝ ∃x (φ(x)) ∧ ψ ∃x . φ(x) ∨ ψ(x) ⇝ ∃x (φ(x)) ∨ ∃x (ψ(x))

eliminate variables in the formula by equality resolution

∀x .¬(x = t) ∨ φ(x) ⇝ φ(t) ∃x . x = t ∧ φ(x) ⇝ φ(t)

simplify the formula with unconstrained or partly constrained terms
unconstrained term = term that can have an arbitrary value
let u be a free or existentially quantified unconstrained variable
let v be a fresh variable

u + 5 ∗ (y + z) ⇝ v u[n] ∗[n] 4[n] ⇝ concat[n−2,2](v[n−2],0[2])

let u be universally quantified unconstrained variable

t <u u ⇝ false t ≤u u ⇝ t = 0

30/38



Algorithm improvements: modifications of input formula

push quantifiers in the formula downwards (miniscoping)

∀x . φ(x) ∨ ψ ⇝ ∀x (φ(x)) ∨ ψ ∀x . φ(x) ∧ ψ(x) ⇝ ∀x (φ(x)) ∧ ∀x (ψ(x))
∃x . φ(x) ∧ ψ ⇝ ∃x (φ(x)) ∧ ψ ∃x . φ(x) ∨ ψ(x) ⇝ ∃x (φ(x)) ∨ ∃x (ψ(x))

eliminate variables in the formula by equality resolution

∀x .¬(x = t) ∨ φ(x) ⇝ φ(t) ∃x . x = t ∧ φ(x) ⇝ φ(t)

simplify the formula with unconstrained or partly constrained terms
unconstrained term = term that can have an arbitrary value
let u be a free or existentially quantified unconstrained variable
let v be a fresh variable

u + 5 ∗ (y + z) ⇝ v u[n] ∗[n] 4[n] ⇝ concat[n−2,2](v[n−2],0[2])

let u be universally quantified unconstrained variable

t <u u ⇝ false t ≤u u ⇝ t = 0

30/38



Algorithm improvements: modifications of input formula

push quantifiers in the formula downwards (miniscoping)

∀x . φ(x) ∨ ψ ⇝ ∀x (φ(x)) ∨ ψ ∀x . φ(x) ∧ ψ(x) ⇝ ∀x (φ(x)) ∧ ∀x (ψ(x))
∃x . φ(x) ∧ ψ ⇝ ∃x (φ(x)) ∧ ψ ∃x . φ(x) ∨ ψ(x) ⇝ ∃x (φ(x)) ∨ ∃x (ψ(x))

eliminate variables in the formula by equality resolution

∀x .¬(x = t) ∨ φ(x) ⇝ φ(t) ∃x . x = t ∧ φ(x) ⇝ φ(t)

simplify the formula with unconstrained or partly constrained terms
unconstrained term = term that can have an arbitrary value
let u be a free or existentially quantified unconstrained variable
let v be a fresh variable

u + 5 ∗ (y + z) ⇝ v u[n] ∗[n] 4[n] ⇝ concat[n−2,2](v[n−2],0[2])

let u be universally quantified unconstrained variable

t <u u ⇝ false t ≤u u ⇝ t = 0

30/38



Algorithm improvements: modifications of input formula

push quantifiers in the formula downwards (miniscoping)

∀x . φ(x) ∨ ψ ⇝ ∀x (φ(x)) ∨ ψ ∀x . φ(x) ∧ ψ(x) ⇝ ∀x (φ(x)) ∧ ∀x (ψ(x))
∃x . φ(x) ∧ ψ ⇝ ∃x (φ(x)) ∧ ψ ∃x . φ(x) ∨ ψ(x) ⇝ ∃x (φ(x)) ∨ ∃x (ψ(x))

eliminate variables in the formula by equality resolution

∀x .¬(x = t) ∨ φ(x) ⇝ φ(t) ∃x . x = t ∧ φ(x) ⇝ φ(t)

simplify the formula with unconstrained or partly constrained terms
unconstrained term = term that can have an arbitrary value
let u be a free or existentially quantified unconstrained variable
let v be a fresh variable

u + 5 ∗ (y + z) ⇝ v u[n] ∗[n] 4[n] ⇝ concat[n−2,2](v[n−2],0[2])

let u be universally quantified unconstrained variable

t <u u ⇝ false t ≤u u ⇝ t = 0

30/38



Algorithm improvements: approximations

approximate bitvector variables by using less Boolean variables
reduce the number of propositional variables representing x[n]

xn−1xn−2 . . . x3x2x1x0 ⇝ 0 0 . . . 0 x2x1x0 zero-extension
xn−1xn−2 . . . x3x2x1x0 ⇝ x2x2 . . . x2x2x1x0 sign-extension

underapproximation
φ = formula φ with reduced existentially quantified variables

φ is satisfiable =⇒ φ is satisfiable

overapproximation
φ = formula φ with reduced universally quantified variables

φ is unsatisfiable =⇒ φ is unsatisfiable

31/38



Algorithm improvements: approximations

approximate bitvector variables by using less Boolean variables
reduce the number of propositional variables representing x[n]

xn−1xn−2 . . . x3x2x1x0 ⇝ 0 0 . . . 0 x2x1x0 zero-extension
xn−1xn−2 . . . x3x2x1x0 ⇝ x2x2 . . . x2x2x1x0 sign-extension

underapproximation
φ = formula φ with reduced existentially quantified variables

φ is satisfiable =⇒ φ is satisfiable

overapproximation
φ = formula φ with reduced universally quantified variables

φ is unsatisfiable =⇒ φ is unsatisfiable

31/38



Algorithm improvements: approximations

approximate bitvector variables by using less Boolean variables
reduce the number of propositional variables representing x[n]

xn−1xn−2 . . . x3x2x1x0 ⇝ 0 0 . . . 0 x2x1x0 zero-extension
xn−1xn−2 . . . x3x2x1x0 ⇝ x2x2 . . . x2x2x1x0 sign-extension

underapproximation
φ = formula φ with reduced existentially quantified variables

φ is satisfiable =⇒ φ is satisfiable

overapproximation
φ = formula φ with reduced universally quantified variables

φ is unsatisfiable =⇒ φ is unsatisfiable

31/38



Algorithm improvements: abstractions of bitvector operations

satisfiability can be sometimes decided without costly computations
abstract bitvector operations by computing only BDDs under a given node limit

x0

y0

x1 x1

y1

x2 x2

y2 y2

10

x0

y0

x1 x1

y1 y1

10

? ?

x0

y0 y0

10

x[3] +[3] y[3]

32/38



Algorithm improvements: abstractions of bitvector operations

satisfiability can be sometimes decided without costly computations
abstract bitvector operations by computing only BDDs under a given node limit

x0

y0

x1 x1

y1

x2 x2

y2 y2

10

x0

y0

x1 x1

y1 y1

10

? ?
x0

y0 y0

10

x[3] +[3] y[3]

32/38



Algorithm improvements: abstractions of bitvector operations

satisfiability can be sometimes decided without costly computations
abstract bitvector operations by computing only BDDs under a given node limit

adopt BDD operations to handle ? correctly

? ∧ B =

 0 if B = 0

? otherwise

32/38



Algorithm improvements: abstractions of bitvector operations

satisfiability can be sometimes decided without costly computations
abstract bitvector operations by computing only BDDs under a given node limit

two modes for evaluation of atomic subformulae

t[3]

t ′[3] B′
0B′

1B′
2

B2 B1 B0

t[3] =[3] t ′[3] (B2 ⇐⇒ B′
2) ∧ (B1 ⇐⇒ B′

1) ∧ (B0 ⇐⇒ B′
0)

optimist true ∧ true ∧ (B0 ⇐⇒ B′
0)

pesimist false ∧ false ∧ (B0 ⇐⇒ B′
0)

32/38



Algorithm improvements: abstractions of bitvector operations

satisfiability can be sometimes decided without costly computations
abstract bitvector operations by computing only BDDs under a given node limit

two modes for evaluation of atomic subformulae

t[3]

t ′[3] B′
0B′

1B′
2

? ? B0

t[3] =[3] t ′[3] (B2 ⇐⇒ B′
2) ∧ (B1 ⇐⇒ B′

1) ∧ (B0 ⇐⇒ B′
0)

optimist true ∧ true ∧ (B0 ⇐⇒ B′
0)

pesimist false ∧ false ∧ (B0 ⇐⇒ B′
0)

32/38



Algorithm improvements: abstractions of bitvector operations

satisfiability can be sometimes decided without costly computations
abstract bitvector operations by computing only BDDs under a given node limit

two modes for evaluation of atomic subformulae

t[3]

t ′[3] B′
0B′

1B′
2

? ? B0

t[3] =[3] t ′[3] (B2 ⇐⇒ B′
2) ∧ (B1 ⇐⇒ B′

1) ∧ (B0 ⇐⇒ B′
0)

optimist true ∧ true ∧ (B0 ⇐⇒ B′
0)

pesimist false ∧ false ∧ (B0 ⇐⇒ B′
0)

pesimist claims satisfiability =⇒ formula is satisfiable
optimist claims unsatisfiability =⇒ formula is unsatisfiable

32/38



Q3B

underapproximating solver precise solver overapproximating solver

φ

Simplify φ

Compute
underapproximating
BDD with precision

Set
precision

to low

Increase
precision

Check
countermodel

against φ

Compute
precise
BDD

Compute
overapproximating
BDD with precision

Set
precision

to low

Increase
precision

Check
model

against φ

SAT UNSAT

unsat sat

invalid valid

sat unsat satunsat

invalidvalid

33/38



Evaluation of SMT solvers for BV

results from 2019
CPU time limit 20 minutes and memory limit 16 GiB per formula

solved by

family total Boolector CVC4 Q3B Z3

2017-Preiner-keymaera 4035 4019 3996 4009 4031
2017-Preiner-psyco 194 193 190 182 194
2017-Preiner-scholl-smt08 374 306 248 317 272
2017-Preiner-tptp 73 69 73 73 73
2017-Preiner-UAutomizer 153 152 151 153 153
20170501-Heizmann-UAutomizer 131 30 128 124 32
2018-Preiner-cav18 600 549 565 565 550
wintersteiger 191 162 174 182 163

Total 5751 5480 5525 5605 5468

34/38



Evaluation of SMT solvers for BV

35/38



Success of Q3B in SMT-COMP

2016 1st in the Main Track of the BV division
in Sequential Performance and Parallel Performance

2017 1st in the Main Track of the BV division
in Sequential Performance and Parallel Performance

2019 2nd in the Single Query Track of the BV division
in Sequential Performance, Parallel Performance, SAT Performance,
and 24 seconds Performance

2022 2nd in the Single Query Track of the BV division
in Sequential Performance, Parallel Performance, SAT Performance,
UNSAT Performance, and
1st in 24 seconds Performance

36/38



Ongoing research and development of Q3B

improved caching and static analysis of BV formulae
advanced sifting algorithms
use of partial BDDs

x0

y0

x1

y1

x2

y2 y2

10 ?

37/38



Ongoing research and development of Q3B

improved caching and static analysis of BV formulae
advanced sifting algorithms
use of partial BDDs

x0

y0

x1

y1

x2

y2 y2

10 ?

37/38



Conclusions and references

BDDs have known limitations, but also great advantages and efficient libraries
in the context of SAT/SMT-solving, BDDs like quantifiers

[SAT’16] M. Jonáš and J. S.: Solving Quantified Bit-Vector Formulas Using
Binary Decision Diagrams, SAT 2016.

[SAT’17] M. Jonáš and J. S.: On Simplification of Formulas with Unconstrained
Variables and Quantifiers, SAT 2017.

[ICTAC’18] M. Jonáš and J. S.: Abstraction of Bit-Vector Operations for
BDD-Based SMT Solvers, ICTAC 2018.

[IPL’18] M. Jonáš and J. S.: On the Complexity of the Quantified Bit-Vector
Arithmetic with Binary Encoding, Inf. Process. Lett. 135:57-61, 2018.

[CAV’19] M. Jonáš and J. S.: Q3B: An Efficient BDD-Based SMT Solver for
Quantified Bit-Vectors, CAV 2019.

38/38



Conclusions and references

BDDs have known limitations, but also great advantages and efficient libraries
in the context of SAT/SMT-solving, BDDs like quantifiers

[SAT’16] M. Jonáš and J. S.: Solving Quantified Bit-Vector Formulas Using
Binary Decision Diagrams, SAT 2016.

[SAT’17] M. Jonáš and J. S.: On Simplification of Formulas with Unconstrained
Variables and Quantifiers, SAT 2017.

[ICTAC’18] M. Jonáš and J. S.: Abstraction of Bit-Vector Operations for
BDD-Based SMT Solvers, ICTAC 2018.

[IPL’18] M. Jonáš and J. S.: On the Complexity of the Quantified Bit-Vector
Arithmetic with Binary Encoding, Inf. Process. Lett. 135:57-61, 2018.

[CAV’19] M. Jonáš and J. S.: Q3B: An Efficient BDD-Based SMT Solver for
Quantified Bit-Vectors, CAV 2019.

38/38



Conclusions and references

BDDs have known limitations, but also great advantages and efficient libraries
in the context of SAT/SMT-solving, BDDs like quantifiers

[SAT’16] M. Jonáš and J. S.: Solving Quantified Bit-Vector Formulas Using
Binary Decision Diagrams, SAT 2016.

[SAT’17] M. Jonáš and J. S.: On Simplification of Formulas with Unconstrained
Variables and Quantifiers, SAT 2017.

[ICTAC’18] M. Jonáš and J. S.: Abstraction of Bit-Vector Operations for
BDD-Based SMT Solvers, ICTAC 2018.

[IPL’18] M. Jonáš and J. S.: On the Complexity of the Quantified Bit-Vector
Arithmetic with Binary Encoding, Inf. Process. Lett. 135:57-61, 2018.

[CAV’19] M. Jonáš and J. S.: Q3B: An Efficient BDD-Based SMT Solver for
Quantified Bit-Vectors, CAV 2019.

38/38


